Optics+Photonics Showcase
daily coverage of the optics & photonics industry and the markets that it serves
Menu
Research & Development

Southampton develops ‘time crystal’ based on metamaterial

09 May 2023

System developed by Prof. Nikolay Zheludev promises new optical and photonic devices.

A “time crystal”, as originally proposed in 2012, is a new state of matter in which the particles are in continuous oscillatory motion. Time crystals break time-translation symmetry. Discrete time crystals do so by oscillating under the influence of a periodic external parametric force, and this type of time crystal has been demonstrated in trapped ions, atoms and spin systems.

Continuous time crystals are more interesting and arguably more important, as they exhibit continuous time-translation symmetry but can spontaneously enter a regime of periodic motion, induced by a vanishingly small perturbation. It is now understood that this state is only possible in an open system, and a continuous quantum-time-crystal state has recently been observed in a quantum system of ultracold atoms inside an optical cavity illuminated with light.

Related news: Aalto University creates photonic ‘time crystals’ that amplify light

Now researchers at University of Southampton, UK, say that a recent paper that they published in Nature Physics, “shows that a classical metamaterial nanostructure can be driven to a state that exhibits the same key characteristics of a continuous time crystal”.

‘New state of matter’

Prof. Nikolay Zheludev, one of the researchers who carried out the study, commented, “We have been studying light-matter interactions with nano-opto-mechanical metamaterials for several years.We recently realized that this was a perfect platform for demonstrating the time crystal state.”

As part of their recent study, Prof. Zheludev and his colleagues set out to realize a continuous time crystal state using a photonic metamaterial. The system they used is a 2D array of plasmonic metamolecules – artificial structures that facilitate interaction with light at the nanoscale – supported by flexible nanowires.

The researchers demonstrated that continuously and coherently illuminating this photonic metamaterial with a light that resonates with the plasmonic mode of the metamolecules contained within it caused a spontaneous phase transition to a state that possesses the key properties of a continuous time crystal. This state is characterized by continuous oscillations resulting from many-body interactions between the metamolecules.

“We found that a photonic metamaterial, an array of nanowires decorated with plasmonic nanoparticles, can be driven to the state of coherent oscillations of the nanowires by light-induced interaction between the particles,” said Prof. Zheludev. “These oscillations emerge spontaneously upon reaching a threshold of light illumination. Such behavior constitutes a continuous time crystal, a new state of matter.”

The recent study by this team of researchers could open new avenues for research into time crystals and dynamic classical many-body states in the strongly correlated regime. In the future, the unique system realized by Prof. Zheludev and his colleagues could also pave the way toward the development of new optical and photonic devices.

“We demonstrated a continuous time crystal, a new state of matter on a simple classical platform, which is a substantial step towards applications of the continuous time crustal state in photonics devices,” Prof. Zheludev added. “The reported observation is only the beginning, and we will continue exploring fundamental properties of the nano-opto-mechanical metamaterial continuous time crystals and their applications.”

Berkeley Nucleonics CorporationLaCroix Precision OpticsMad City Labs, Inc.CeNing Optics Co LtdSPECTROGON ABAlluxaTRIOPTICS GmbH
© 2024 SPIE Europe
Top of Page