Optics.org
daily coverage of the optics & photonics industry and the markets that it serves
Featured Showcases
Photonics West Showcase
Optics+Photonics Showcase
News
Menu
Applications

Sensuron spins out of 4DSP and launches fiber optic sensors

26 Aug 2015

Sensors, co-developed with NASA, monitor systems in demanding environments to encourage sustainable development.

Sensuron and 4DSP: now separate firms.

Sensuron and 4DSP: now separate firms.

Sensuron, a developer of compact fiber optic sensing systems, has launched its RTS 125 and RTS 150 sensors, after spinning off from sister company, 4DSP. Now its own entity, Sensuron’s launch statement says its “mission is to solve problems on a global scale and enable industry innovation by utilizing light-based technologies that ensure equipment in the aerospace, medical and energy fields is functional, reliable and safe.”

Michael Heflin, CEO at Sensuron, commented, “By investing in compact fiber optic sensing solutions, businesses can consolidate several disparate technologies into a single platform to continuously test, control and monitor the health of systems. Sensuron’s FOS platform enables innovations that change industries.”

Allen Parker, an engineer at NASA’s Armstrong Flight Research Center, said, “We have been collaborating with 4DSP, now Sensuron, to develop the next generation of fiber optic sensing systems for the past 10 years. We have been able to build an exponentially smaller system than was previously used in these markets, with exceptional accuracy. Driven by NASA’s ultra-efficient algorithms, this compact FOS system represents a major breakthrough in high-speed operational monitoring and sensing.”

Market opportunity

Across aerospace, medical and energy fields, equipment deterioration and the continuous monitoring of materials can be expensive to maintain and costly to an organization’s operations. Defective equipment can pose risks for civilians and consumers. For example, without careful monitoring, strain during flight can lead to airplane structural problems. Additionally, in launch vehicles, liquid levels in fuel tanks may be higher than needed reducing payload capacity. In the energy field, unreported collisions with rigs can cause long-term structural risks.

Sensuron states that by using existing techniques for monitoring equipment, “engineers are struggling to keep up with industry developments”, adding, “however solutions that not only solve problems, but also help engineers to approach challenges with new thinking, will increase competitive advantages.”

Heflin added, “Sensuron’s compact FOS technology measures miniscule changes in temperature, volume, liquids and stress over a variety of surface areas. The platform can also provide 2D and 3D shape sensing. The fiber sensors reflect light readings back to a converter, which provides users with real-time measurements.”

Sensuron was recently recognized as a 2015 R&D 100 Finalist for its work with NASA Armstrong Flight Research Centre. The global consumption value of fiber optic sensing expected to increase to $2.2bn by 2018, up from $1.8bn in 2013.

About the Author

Matthew Peach is a contributing editor to optics.org.

TRIOPTICS GmbHMad City Labs, Inc.Photon Lines LtdUniverse Kogaku America Inc.AlluxaOmicron-Laserage Laserprodukte GmbHLASEROPTIK GmbH
© 2024 SPIE Europe
Top of Page