daily coverage of the optics & photonics industry and the markets that it serves
Research & Development

UCF team develops ‘world's first’ optical oscilloscope

14 Dec 2021

Florida researchers say the new scope could ultimately boost optical data transmission rates by a factor of 10,000.

A team from the University of Central Florida (UCF) has developed what they are calling “the world's first optical oscilloscope” – an instrument that can measure the electric field of light.

Until now, reading the electric field of light has been a challenge because of the high speeds at which light waves oscillates. The most advanced techniques, which typically power phone and internet communications, can currently clock electric fields at up to gigahertz frequencies. Light waves oscillate at much higher rates, allowing a higher density of information to be transmitted.

However, the current tools for measuring light fields could resolve only an average signal associated with a 'pulse' of light, and not the peaks and valleys within the pulse. Measuring those peaks and valleys within a single pulse is important because it is in that space that information can be packed and delivered.

Higher data rates now possible

“Fiber optic communications have taken advantage of light to make things faster, but we are still functionally limited by the speed of the oscilloscope,” said UCF Physics Associate Professor Michael Chini, who worked on the research at UCF. “Our optical oscilloscope may be able to increase that speed by a factor of about 10,000.” The work is described in Nature Photonics.

The team developed the device and demonstrated its capability for real-time measurement of the electric fields of individual laser pulses in Chini's lab at UCF. The next step for the team is to see how far they can push the speed limits of the technique.

The lead author of the paper is UCF postdoctoral scholar Yangyang Liu. Other authors include Jonathan Nesper; Shima Gholam-Mirzaei; and John E. Beetar. Gholam-Mirzaei is now a postdoctoral researcher at the Joint Attosecond Science Laboratory at the National Research Council of Canada and University of Ottawa and Beetar is completing a postdoc at the University of California at Berkeley.

Chini had the idea for the single-shot waveform measurement scheme and oversaw the research team. Liu led the experimental effort and performed most of the measurements and simulations. Beetar assisted with the measurements of the carrier-envelope phase dependence. Nesper and Gholam-Mirzaei assisted with the construction of the experimental setup and with the data collection. All authors contributed to the data analysis and wrote the journal article.

Hyperion OpticsMad City Labs, Inc.LaCroix Precision OpticsCeNing Optics Co LtdOptikos Corporation TRIOPTICS GmbHBerkeley Nucleonics Corporation
© 2024 SPIE Europe
Top of Page