Optics.org
daily coverage of the optics & photonics industry and the markets that it serves
Featured Showcases
Photonics West Showcase
Optics+Photonics Showcase
News
Menu
Research & Development

Flinders researchers discover new low-cost material for thermal imaging lenses

31 May 2023

Development could extend technique to sectors previously limited by high cost of specialized lenses.

Researchers at Flinders University, Adelaide, Australia, have discovered a low-cost material that can be made into lenses for thermal imaging — which, they say, points to new advanced manufacturing applications for this technology.

Thermal and infrared imaging are used in many industries including defense, security and surveillance, medicine, electrical engineering, space exploration and autonomous vehicle operation—but the materials required are expensive and becoming more difficult to find.

Lower cost alternatives are needed so a multi-disciplinary team in chemistry and physics at Flinders University have developed a solution in an entirely new polymer material made from sulfur and cyclopentadiene. They say the high-performance polymers have the unique ability to transmit infrared light.

‘Extending the use of thermal imaging’

“The material combines high performance, low cost and efficient manufacturing,” said Ph.D. candidate Sam Tonkin, first author in a paper describing the work in Advanced Optical Materials. “It has the potential to extend the use of thermal imaging to new industries which were previously limited by the high cost of germanium or chalcogenide lenses. This is a rapidly developing field which will see exciting advances in the next few years,” he said.

Sulfur is produced in many millions of tons in petroleum refining. Billions of tons are available in geological deposits. It is plentiful and cheap. Cyclopentadiene is also derived from low-cost materials produced in petroleum refining.

The lenses used for thermal imaging are currently made from germanium or chalcogenide glasses. Germanium is an element in short supply and it is very expensive. Some germanium lenses can costs thousands of dollars. Chalcogenide glasses also have shortcomings. For instance, they are often made of toxic elements such as arsenic or selenium.

Co-author Dr. Le Nhan Pham, a Flinders University researcher in computational and physical chemistry, says reacting sulfur and cyclopentadiene together provides a black plastic with high transparency to infrared light. “This is the light that is detected by thermal imaging cameras. This novel material was designed to have a wide array of potential applications from space engineering to military operation, and to civil and aerospace industries,” he said.

The polymer can be molded into a variety of lenses, which can be used, for example, to magnify the image in a thermal camera. Because the polymer is black, it can also be used to conceal and protect thermal imaging equipment. The polymer can therefore be used as camouflage to hide a camera used for surveillance.

The infrared light passes through the polymer, so one can see through it using an infrared camera. This property is useful for defense operations and wildlife surveillance. The polymer also has many other features: it has the highest long-wave infrared light transparency ever reported for a plastic; the raw materials are low cost (for a 1g lens the building blocks cost less than 1 cent); and it allows rapid molding into various shapes such as lenses.

The study also reported some key scientific advances, including a new reactor that was designed to enable the key reaction. A key challenge was to be able to use the building blocks in gaseous form. The use of gaseous monomers was previous thought not to be possible by other researchers in the area.

HÜBNER PhotonicsOmicron-Laserage Laserprodukte GmbHLaCroix Precision OpticsSacher Lasertechnik GmbHUniverse Kogaku America Inc.Berkeley Nucleonics CorporationCHROMA TECHNOLOGY CORP.
© 2024 SPIE Europe
Top of Page