Optics.org
daily coverage of the optics & photonics industry and the markets that it serves
Featured Showcases
Photonics West Showcase
Menu
Historical Archive

Photonic crystal boosts OLED output

23 May 2003

Scientists in Korea increase the extraction efficiency of an OLED by 50% by etching a 2D array of rods into its substrate.

By texturing the glass substrate of an organic light-emitting diode (OLED) with a photonic-crystal (PC) pattern, researchers in Korea claim to have increased the device’s extraction efficiency by over 50% over a wide viewing angle. Having theoretically predicted an 80% increase, the team says there is still room for improvement. (Applied Physics Letters 82 3779)

“Experimentally, a 50% enhancement of the extraction efficiency was realized for the viewing angle range 90° ± 40° compared with a conventional OLED,” report Yong-Jae Lee and colleagues from Korea’s Advanced Institute of Science and Technology and Samsung.

Photons emitted from the active region of an OLED are coupled into one of three modes: direct transmission into the air, which accounts for 20% of the emitted photons; total internal reflection, which accounts for 30% of the emitted photons; and a high-index guided mode, which accounts for 50% of the emitted photons.

Lee and colleagues concentrated on maximising the extraction of photons from the high-index guided mode. “It is important to extract the photons from the high-index layer that is close to the light-emitting region if one wishes to maintain the image quality required in display devices,” report the authors.

To enhance the extraction, the team deposited a 200-nm thick layer of SiO2 onto the OLED’s glass substrate. Then using holographic lithography and reactive ion etching, the researchers created a square array of 200-nm diameter rods with a lattice constant of 600 nm. This was topped off with an 800-nm thick buffer layer of SiNx and the OLED’s electrode and light-emitting active layer.

Author
Jacqueline Hewett is news reporter on Optics.org and Opto & Laser Europe magazine.

First Light ImagingSPECTROGON ABCHROMA TECHNOLOGY CORP.HÜBNER PhotonicsIridian Spectral TechnologiesBerkeley Nucleonics CorporationJenLab GmbH
© 2024 SPIE Europe
Top of Page