Optics.org
daily coverage of the optics & photonics industry and the markets that it serves
Featured Showcases
Photonics West Showcase
Products
Menu
Product Announcement

LBO(LiB3O5) Nonlinear Crystal

22 May 2019

Description

LBO crystal — the most excellent nonlinear crystal for Noncritical Phase Matched laser frequency doubling

LBO is one of the excellent non-linear crystals in the ultraviolet band. It has been successfully used in second and third harmonic generation of YLF, YAG, YAP lasers. LBO crystal has wide transmission band, good ultraviolet transmittance, slightly deliquescence, good physical and chemical properties, moderate non-linear optical coefficient, good optical uniformity, high damage threshold, large allowable angle and small walk-off angle. It has been widely used in high average power second harmonic, sum frequency, difference frequency, third harmonic, fourth harmonic and parametric oscillation field.

The greatest advantage of LBO is that temperature tuning can be used to achieve non-critical phase matching (NCPM). When the non-critical phase matching relationship is satisfied in the frequency doubling process, the walk-off angle between the fundamental frequency light and the second harmonic of frequency doubling is 0. At this time, the effective length of LBO crystal can theoretically reach infinity, which can compensate for its small non-linear coefficient. Because its damage threshold is very large, it means that high-power fundamental wave pumping can be realized. Therefore, the conversion efficiency of fundamental frequency light will be greatly improved by using the non-critical phase matching of LBO crystal for the extra-cavity frequency doubling of pulsed laser. The beam quality and stability of frequency light will be greatly improved.

Parameter

Chemical and Physical properties

Property Value
Chemical formula LiB3O5
Crystal structure Orthorhombic, Space group Pna21, Point group mm2
Lattice Parameter a=8.4473Å ,b=7.3788Å, c=5.1395Å, Z=2
Mass density 2.47 g/cm3
Moh hardness 6
Melting point About 834°C
Thermal conductivity 3.5W/m/K
Birefringence Negative biaxial crystal: 2Vz = 109.2˚ at λ = 0.5321μm

Coating

Crystal Dimension/mm Length/mm Application

Orientation Theta/Phi deg

ARCoatings S1/S2,nm/nm

5 x 5 15 THG@1064nm, Type II (e-oe) 42.2/90 1064 + 532 / 355
15 SHG@1064nm, Type I (e-oo) 90/11.6 1064 + 532 / 1064 + 532
6 x 6 0.9 SHG@1030nm 90/13.8 515 + 1030 / 515 + 1030
1.9 SHG@1030nm 90/13.8 515 + 1030 / 515 + 1030
2.8 SHG@1030nm 90/13.8 515 + 1030 / 515 + 1030
3.7 SHG@1030nm 90/13.8 515 + 1030 / 515 + 1030
10 x 10 0.9 SHG@1030nm 90/13.8 515 + 1030 / 515 + 1030
1.9 SHG@1030nm 90/13.8 515 + 1030 / 515 + 1030
2.8 SHG@1030nm 90/13.8 515 + 1030 / 515 + 1030
3.7 SHG@1030nm 90/13.8 515 + 1030 / 515 + 1030
3 x 3 10 THG@1064nm, Type II   (e-oe) 42.2/90 1064 + 532 / 355
15 SHG@1064nm, NCPM I Type 90/0 1064 + 532 / 1064 + 532
15 THG@1064nm, Type II (e-oe) 42.2/90 1064 + 532 / 355
15 SHG@1064nm, Type I (e-oo) 90/11.6 1064 + 532 / 1064 + 532
20 SHG@1064nm, NCPM I Type 90/0 1064 + 532 / 1064 + 532

Polishing

Property Value
Orientation Tolerence < 0.5°
Thickness/Diameter Tolerance ±0.05 mm
Surface Flatness <λ/8@632 nm
Wavefront Distortion <λ/4@632 nm
Surface Quality 10/5
Parallel 30〞
Perpendicular 15ˊ
Clear Aperture >90%
Chamfer <0.2×45°

Linear Optical Properties

Property Value
Transparency Range 169 – 2600 nm
Absorption Coefficient: <0.1%/cm at 1064nm;<0.3%/cm at 532nm
Refractive Indices  
at 1.0642 mm nx = 1.5656, ny = 1.5905, nz=1.6055
at 0.5321 mm nx = 1.5785, ny = 1.6065, nz=1.6212
at 0.2660 mm nx = 1.5973, ny = 1.6286, nz=1.6444
Sellmeier Equations(λ in μm) nx2=2.454140+0.011249/(λ2-0.011350)-0.014591λ2-6.60×10-5λ4
ny2=2.539070+0.012711/(λ2-0.012523)-0.018540λ2+2.0×10-4λ4
nz2=2.586179+0.013099/(λ2-0.011893)-0.017968λ2-2.26×10-4λ4

Nonlinear Optical Properties

Property Value
SHG Phase Matchable Range 551 ~ 2600nm (Type I);790-2150nm (Type II)
NLO coefficients deff(I)=d32cosΦ          (Type I in XY plane)
deff(I)=d31cos2θ+d32sin2θ   (Type I in XZ plane)
deff(II)=d31cosθ         (Type II in YZ plane)
deff(II)=d31cos2θ+d32sin2θ  (Type II in XZ plane)
Non-vanished NLO susceptibilities d31=1.05 ± 0.09 pm/V
d32=-0.98 ± 0.09 pm/V
d33= 0.05 ± 0.006 pm/V
Therm-Optic Coefficients(°C,λ in μm) dnx/dT=-9.3X10-6
dny/dT=-13.6X10-6
dnz/dT=(-6.3-2.1λ)X10-6
Angle Acceptance 6.54mrad-cm (Φ, Type I,1064 SHG)15.27mrad-cm (q, Type II,1064 SHG)

Linear Thermal Expansion Coefficient

T [K] αt×106[ K-1],||X αt×106[K-1 ],||Y αt×106[ K-1],||Z
273 107.1 -95.4 33.7
323 108.2 -88 33.6
373 108.3 -80.9 33.2
423 107.3 -74.0 32.6
473 105.3 -67.3 31.7
523 102.3 -60.7 30.5
573 98.2 -54.4 29.1
673 87.0 -42.3 25.5
723 79.8 -36.5 23.3
773 71.6 -30.9 20.9
873 52.1 -20.3 15.3
923 40.8 -15.3 12.1
973 28.5 -10.6 8.7
1023 15.1 -5.9 5.0
1073 0.8 1.5 1.1

Experimental Values of Refractive Indices

λ[µm] nX nY nZ
0.2537 1.6335 1.6582 1.6792
0.2894 1.6209 1.6467 1.6681
0.2968 1.6182 1.6450 1.6674
0.3125 1.6097 1.6415 1.6588
0.3341 1.6043 1.6346 1.6509
0.3650 1.59523 1.62518 1.64025
0.4000 1.58995 1.61918  
0.4047 1.5907 1.6216 1.6353
0.4358 1.5859 1.6148 1.6297
0.4500 1.58449 1.61301 1.62793
0.4861 1.5817 1.6099 1.6248
0.5000 1.58059 1.60862 1.62348
0.5250 1.57906 1.60686  
0.5321 1.57868 1.60642 1.62122
0.5461 1.5780 1.6057 1.6206
0.5500 1.57772 1.60535 1.62014
0.5780 1.5765 1.6039 1.6187
0.5893 1.5760 1.6035 1.6183
0.6000 1.57541 1.60276 1.61753
0.6328 1.5742 1.6014 1.6163
0.6563 1.5734 1.6006 1.6154
0.7000   1.59893 1.61363
0.8000 1.56959 1.59615 1.61078
0.9000 1.56764 1.59386 1.60843
1.0000 1.56586 1.59187 1.60637
1.0642 1.56487 1.59072 1.60515
1.1000 1.56432 1.59005 1.60449

Experimental Values of Phase-matching Angle (T =293K)

Interacting wavelengths[μm] Φexp [deg] θexp [deg]

XY plane θ=90°

          SHG, o+o ⇒ e

   
1.908⇒0.954 23.8  
1.5⇒0.75 7  
1.0796⇒0.5398 10.6/10.7  
1.0642⇒0.5321 11.3/11.4/11.6/11.8  
0.946⇒0.473 19.4/19.5  
0.930⇒0.465 21.3  
0.896⇒0.448 23.25  
0.88⇒0.44 24.53  
0.850⇒0.425 27  
0.84⇒0.42 27.92  
0.836⇒0.418 28.3  
0.80⇒0.40 31.70  
0.794⇒0.397 32.3  
0.786⇒0.393 33  
0.78⇒0.39 33.70  
0.7735⇒0.38675 34.4  
0.75⇒0.375 37.13/37  
0.746⇒0.373 37.5  
0.7094⇒0.3547 41.8/41.9/42/43.5  
0.63⇒0.315 55.6  
0.555⇒0.2775 86  
0.554⇒0.277 90  
          SFG, o+o ⇒ e    
1.3414+0.6707⇒0.44713 20  
1.0642+0.5321⇒0.35473 37/37.1/37.2  
1.053+0.5265⇒0.351 38.2  
1.0642+0.35473⇒0.26605 60.7/61  
0.86+0.43⇒0.2867 61  
1.3188+0.26605⇒0.22139 70.2  
0.21284+2.35524⇒0.1952 50.3  
0.21284+1.90007⇒0.1914 63.8  
0.21284+1.58910⇒0.18774 88  

YZ plane, Φ=90◦

          SHG, o+e ⇒ o

   
1.908⇒0.954   46.2
1.5⇒0.75   14.7
1.0796⇒0.5398   19.2
1.0642⇒0.5321   19.9/20.5/20.6/21.0
          SFG, o+e ⇒ o    
1.0641+0.53205⇒0.3547   42/42.7
1.0642+0.5321⇒0.35473   42.2/42.5/43.2

XZ plane, Φ=0◦, θ<VZ

          SHG, e+o ⇒ e

   
1.3414⇒0.6707   3.6/4.2/5.0
1.3188⇒0.6594   5.2
1.3⇒0.65   5.4

XZ plane, Φ=0◦, θ>VZ

          SHG, e+e ⇒ o

   
1.3414⇒0.6707   86.1/86.3/86.6
1.3188⇒0.6594   86.0
1.3⇒0.65   86.1
1.24⇒0.62   86

Experimental Values of Non-critical Phase Matching (NCPM) Temperature

Interacting wavelengths[μm] 

T[℃]

along X axis

          SHG, typeⅠ

 

1.547⇒0.7735

117

1.46⇒0.73

50

1.252⇒0.626

3.5

1.25⇒0.625

-2.9

1.215⇒0.6075

21

1.211⇒0.6055

20

1.206⇒0.603

24

1.2⇒0.6

24.3

1.15⇒0.575

61.1

1.135⇒0.5675

77.4

1.11⇒0.555

108.2

1.0796⇒0.5398

112

1.0642⇒0.5321

148/148.5/149/149.5/151

1.047⇒0.5235

166.5/167/172/175/176.5/180

1.025⇒0.5125

190.3

          SFG, typeⅠ

 

1.908+1.0642⇒0.6832

81

1.444+1.08⇒0.6179

23

1.135+1.0642⇒0.5491

112

1.547+0.7735⇒0.5157

141

          DFG, typeⅠ

 

0.532-0.8⇒1.588

135

along Z axis

          SHG, type II

 

1.342⇒0.671

35

1.3⇒0.65

46

Experimental Values of Internal Angular, Temperature, and Spectral Bandwidths

Interacting wavelengths[μm]   T[℃] Δφint [deg]  Δθint [deg] ΔT[℃]
along X axis         
          SHG, type I        
1.46⇒0.73 50     6
1.252⇒0.626 3.5     9
1.206⇒0.603 24     13
1.135⇒0.5675 77.4     4.7
1.0642⇒0.5321 148 3.54 2.57 3.9
148.5     2.7
149 2.3 1.9 4
149.5     4.1
151 2.1 2.1 2.9
1.047⇒0.5235 175     3.5
          SFG, type I        
1.908+1.0642⇒0.6832 81     7.4
1.444+1.08⇒0.6179 23 4.2 3  
1.135+1.0642⇒0.5491 112     5
          DFG, type I        
0.532-0.8⇒1.588 135     3.8

Experimental Values of Internal Angular, Temperature, and Spectral Bandwidths

Interacting wavelengths[μm]  Φpm[deg] θpm[deg] Δφint[deg] Δθint[deg] ΔT[℃] Δν[cm-1]
XY plane, θ =90(T=293K)            
          SHG, o+o ⇒ e            
1.0796⇒0.5398 10.7   0.31      
1.0642⇒0.5321 10.8   0.27 2.63    
11.4   0.24 1.79    
11.6       5.8  
    0.34 2.64 6.7 8.8
0.886⇒0.443 24.1       7.8 15.9
0.870⇒0.435 25.4   0.12     141
0.78⇒0.39 33.7   0.08     194
0.7605⇒0.38025 35.9       15.3 10.5
0.715⇒0.3575 41   0.06      
          SFG, o+o ⇒ e             
1.0642+0.3547⇒0.2661 60.7       3.8  
YZ plane, φ =90(T=293K)            
          SHG, o+e ⇒ o            
1.0642⇒0.5321   20.6 3.2 0.77    
    3 0.81   11.5
          SFG, o+e ⇒ o            
1.0641+0.53205⇒0.3547   42 0.79 0.16 6  
1.0642+0.5321⇒0.35473   42.2   0.18    
  41 3.07 0.18    

Calculated Values of Inverse Group-velocity Mismatch for SHG Process in LBO

Interacting wavelengths[μm] Φpm[deg] θpm[deg] β[fs/mm]
XY plane, θ =90◦      
           SHG, o+o ⇒ e      
1.2⇒0.6 2.36   18
1.1⇒0.55 9.37   37
1.0⇒0.5 15.74   59
0.9⇒0.45 22.94   86
0.8⇒0.4 31.69   123
0.7⇒0.35 43.38   175
0.6⇒0.3 62.63   257
YZ plane, φ =90◦      
           SHG, o+e ⇒ o      
1.1⇒0.55   15.98 82
1.0⇒0.5   28.96 106
0.9⇒0.45   45.36 139
0.8⇒0.4   76.88 186

Laser-induced Surface-damage Threshold

λ[µm] τp [ns]  Ithr [GW/cm2] Note
0.2661 12 >0.04  
0.308 17 >0.05  
0.0003 47,000 sharp focusing
0.3547 18 >0.18 10Hz
8 >0.1  
7 >0.14  
0.03 >9.4 10Hz
0.015 >2.8  
0.018 >5  
0.025 >6 10Hz
0.5145 CW >0.00003  
0.5235 0.055 >1.1 500Hz
0.5321 CW >0.0004  
60 >0.07 900Hz
10 >0.22  
0.1 >4.5 500Hz
0.035 >3.1  
0.015 >4.4  
0.592 0.0005 >50 1kHz
0.605 0.0002 >25  
0.616 0.0004 31,000 sharp focusing
0.652 0.02 >0.81  
0.7–0.9 10 >0.03 10Hz
0.71–0.87 25 1.1–1.4 25Hz
0.72–0.85 0.001 >8  
0.77–0.83 0.00005 >22 80MHz
1.0642 CW >0.001  
60 >0.06 1333Hz
18 >0.6 10Hz
9 >0.9 10Hz
8 >0.5  
1.3 19  
1.1 45 bulk damage
0.1 25  
0.035 >4.8  
0.025 >3.3 10Hz
1.0796 5 20 1–25Hz
0.04 30  

Temperature derivative of refractive indices

for spectral range 0.4–1.0µm and temperature range 293–338K (λ in µm):

dnX/dT=-1.8×10-6K-1

dny/dT=-13.6×10-6K-1

dnz/dT=-(6.3+2.1λ)×10-6K-1

for spectral range 0.4–1.0 µm and temperature range 293–383K (λ in µm):

dnX/dT=-(3.76λ-2.3)×10-6K-1

dny/dT=-(19.40-6.01λ)×10-6K-1

dnz/dT=-(9.70-1.50λ)×10-6K-1

for λ =0.6328µm and temperature range 293–473K (λ in µm, T in K):

dnX/dT=[0.20342-1.9697×10-2 (T-273)-1.4415×10-5(T-273)2]×10-6K-1

dny/dT=-[10.748+7.1034×10-2 (T-273) +5.7387×10-5(T-273)2]×10-6K-1

dnz/dT=-[0.85998+1.5476×10-1 (T-273) -9.4675×10-4(T-273)2+2.2375×10-6(T-273)3]×10-6K-1

Other Parameters

Specific Heat Capacity cp  at P =0.101325 MPa
T [K] cp[J/kgK]    
298 1060    
Linear Absorption Coefficient α 
λ[µm] α [cm-1]    
0.35–0.36 0.0031    
1.0642 0.00035    
Two-photon Absorption Coefficient β
λ[µm] τp[ns] β×1011[cm/W] Note
0.211 0.0009 103±36 θ =90°, Φ=30°
0.264 0.0008 15±5 θ =90°, Φ=30°
Nonlinear Refractive Index γ
λ[µm] γ×1015[cm2/W] Note  

0.78

0.26±0.03 [100] direction  
0.19±0.03 [010] direction  
0.85 0 .19±0.04    

Features

  •  Low sensitivity to moisture

  • Dispertive angle is small

  • High optical homogeneity

  • The range of tunable wavelengths is large

  • The region of transparency is wide

  • Damage threshold is high

  • Wide acceptance angle

Applications

Material Processing

Optical Communication

Holography

Medical Applications

OPA(Optical parametric amplifiers) and OPO(oscillators)

SHG(Frequency harmonic doubling) and THG(Tripling harmonic doubling)

Diode laser pumped Nd: YLF laser and Nd:YAG laser. Alexandrite, Ti:Sapphire, Dye Lasers, Ultrashort Pulse Lasers

CONTACT DETAILS
Nanjing Crylink Photonics Co.,Ltd
No.3, Hengda Road, Economic and Technological Development Zone, Nanjing, China
No.200,Zhaoxian Road,Jiading District,Shanghai City
Nanjing
Jiangsu
210038
China
Tel: (86)025-68790684
Fax: (86)025-68790685
Email Us
Web Site
© 2024 SPIE Europe
Top of Page