Optics.org
daily coverage of the optics & photonics industry and the markets that it serves
Featured Showcases
Photonics West Showcase
Products
Menu
Product Announcement

YCOB(YCa4O(BO3)3) Nonlinear Crystal

22 May 2019

Description

YCOB (YCa4O(BO3)3, Yttrium Calcium Oxyborate)—Nonlinear crystal considered to have good prospects of  UV band optical frequency multiplier

YCOB crystal is one of the most widely used nonlinear optical crystals. Its nonlinear optical coefficient is equivalent to that of BBO crystal and LBO crystal. The effective frequency multiplication coefficients of the second and third order reach 2, 8 and 1, 4 times of KDP respectively.The YCOB crystal has the following advantages : large aperture,  high damage intensity in femtosecond regime,about2000-2500GW/cm2 wide allowable Angle range and allowable temperature range,small dispersion Angle, shorter growth period by Cz method.At the same time, it has stable physical and chemical properties (non-deliquescent) and good machining properties. Therefore, it is considered to have good application prospects of blue-green light and UV band optical frequency multiplier crystal.

One of the latest technical achievements connected with YCOB is the generation of 2.35-W CW green output (λ = 532 nm) in a 1.2-cm-long crystal (θ = 64.5◦, φ =35.5◦) via inter cavity SHG of a diode-array end-pumped Nd:YVO4 laser (= 5.6W). Another similar application is THG of NdYVO4 laser radiation. Using the KTP crystal for frequency doubling and a 1.1-cm-longYCOB crystal (θ = 106◦, φ =77.2◦), the authors managed to obtain 124mW of quasi-CW light (pulse repetition frequency 20 kHz) at 355 nm.

 

Parameter

Chemical and Physical properties

Crystal Structure Monoclinic, Point group m
Lattice Parameter a=8.0770 Å, b=16.0194 Å , c=3.5308 Å ,  β=101.167º, Z=2
Melting Point About 1510ºC
Mohs Hardness 6~6.5
Density 3.31 g/cm3
Thermal Conductivity 2.6 W/m/K (||X), 2.33 W/m/K (||Y), 3.1 W/m/K (||Z)

Polishing

Orientation Tolerence < 0.5°
Thickness/Diameter Tolerance ±0.01 mm
Surface Flatness <λ/8 @632nm
Wavefront Distortion <λ/4 @632nm
Surface Quality 10/5
Parallel 30〞
Perpendicular 15ˊ
Clear Aperture >90%
Chamfer <0.2×45°

Experimental Values of Phase-matching Angle for SHG and SFG in Principal Planes of YCOB Crystal at T =293K

Interacting wavelengths[μm]   Φpm [deg] θpm [deg]
XY plane,θ =90°    
          SHG,o+o ⇒ e    
1.0642⇒0.5321 35  
0.7379⇒0.36895 77.3  
          SHG, type I, along Y    
0.724⇒0.362 90  
          SFG, o+o ⇒ e    
1.0642+0.5321⇒0.3547 73.4/74.8/75.2/75.3  
          SHG, type II, along Y    
1.03⇒0.515 90  
          SFG, e+o ⇒ e    
1.9079+1.0642⇒0.6831 81.2  
YZ plane, Φ=90◦     
          SHG, e+e ⇒ o    
0.7379⇒0.36895   66.9
          SFG, e+e ⇒ o    
1.0642+0.5321⇒0.3547   58.7/59.7/59.8/59.9
          SHG, e+o ⇒ o    
1.0642⇒0.5321   58.7/51.1/62.7
          SFG, e+o ⇒ o    
1.9079+1.0642⇒0.6831   73.5
XZ plane, Φ=0◦, θ<VZ    
          SHG, type I, along Z    
0.83⇒0.415   0
0.8325⇒0.41625   0
          SHG, o+o ⇒ e    
0.9⇒0.45   18.7
0.954⇒0.477   24.1
1.0642⇒0.5321   30.8/31.7
1.3382⇒0.6691   38.2/38.3
          SFG, o+o ⇒ e    
1.0642+0.7379⇒0.4358   17.1
1.569+0.5321⇒0.3973   18.6
1.3188+0.6594⇒0.4396   23
1.9079+0.5321⇒0.4161   26.6

Experimental Values of Internal Angular Bandwidth for SHG and SFG in Principal Planes of YCOB Crystal

Interacting wavelengths[μm] Φpm [deg] θpm [deg] Δϕint[deg] Δθint[deg]
XY plane, θ =90◦        
          SHG, o+o ⇒ e        
1.0642⇒0.5321 35   0.09  
         SHG, e+o ⇒ e        
1.0642⇒0.5321 73.4   0.32  
          SFG, o+o ⇒ e        
1.0642+0.5321⇒0.3547 73.2   0.11  
YZ plane, φ =90◦        
          SHG, e+o ⇒ o        
1.0642⇒0.5321   58.7   0.74
          SFG, e+e ⇒ o        
1.0642+0.5321⇒0.3547   58.7   0.19
XZ plane, Φ=0◦,θ<VZ        
           SHG, o+o ⇒ e        
1.0642⇒0.5321   31.7   0.08

Note: For a biaxial crystal, two angular acceptances exist: one in θ and other in . The authors have presented only the smallest one.

Experimental Values of Temperature Bandwidth for SHG And SFG in principal planes of YCOB crystal

Interacting wavelengths[μm] ΔT[℃] Note
XY plane, θ =90◦    
          SHG, o+e ⇒ e    
1.0642⇒0.5321 32.7  
32.8 Φ=75.3°
          SFG, o+o ⇒e    
1 .0642+0.5321⇒0.3547 8.6 Φ=73.7°
9.7/10  
YZ plane, φ =90◦    
          SHG, o+e ⇒ o    
1.0642⇒0.5321 31.5 θ =62.7°
31.7/29.2  
          SFG, e+e ⇒ o    
1.0642+0.5321⇒0.3547 6.2/8.5  
XZ plane, φ =0◦, θ>180◦−VZ    
          SHG, type I, along Z    
0.8325⇒0.41625 21.6/31.5  
          SHG, o+o ⇒ e    
0.9⇒0.45 24.6 θ =18.7°
45.3 θ =161.3°
1 .0642⇒0.5321 75 θ =30.8°
1 .3382⇒0.669 61 θ =141.7°
          SFG, o+o ⇒ e    
1 .0642+0.7379⇒0.4358 36.5 θ =162.9°
1 .569+0.5321⇒0.3973 16.9 θ =18.6°
33.8 θ =161.4°

Experimental Values of Effective Second-order Nonlinear Coefficient for Some Specific Phase-matching Directions (SHG, type I, 1.0642µm ⇒0.5321µm) in YCOB Crystal

Phase-matching direction deff [pm/V]
θ =90˚,Φ=35.3˚ (XY plane) 0.39
θ =90˚,Φ=35˚ (XY plane) 0.42
θ =31.7˚,Φ=0˚ (XZ plane) 0.78
1.03
θ =148.3˚,Φ=0˚ (XZ plane) 1.36
1.44
θ =65˚,Φ=36.5˚ 1.14
θ =65.9˚,Φ=36.5˚ 0.91
θ =66.3˚,Φ=143.5˚ 1.45
θ =67˚,Φ=143.5˚ 1.73
θ =66˚,Φ=145˚ 1.8

The properties of deff in the case of YCOB crystal include mirror and inversion symmetries. T his means that the spatial distribution of deff can fully be described by choosing two independent quadrants, for example,(0°<θ<90°,0°<Φ<90°) and (0°<θ<90°,90°<Φ<180°).After that, the deff value in each (θ, Φ) direction in these two quadrants is equal to that in (180°-θ, 180°-Φ) direction and vice versa. For example, the directions (θ =33°, ϕ=9°) and (θ =147°, Φ=171°) possess equal deff values.

Experimental Values of THG Conversion Efficiency (type I, 1.0642µm+ 0.5321µm ⇒0.3547µm, I =0.8GW/cm2, l =1.04cm) for Some Specific Phase-matching Directions in YCOB Crystal

Phase-matching direction THG conversion efficiency[%]
θ =65˚, φ =82.8˚ 2
θ =90˚, φ =73.8˚ (XY plane) 7
θ =111˚, φ =79.6˚ 20
θ =106˚, φ =77.2˚ 26

Laser-induced Bulk Damage Threshold

λ[μm] τp[ns] Ithr[GW/cm2] Note
0.532 6 1  
1.064 10 85 1 pulse
6 >1 10Hz
1.1 18.4 along Y axis, E||Z

Other Parameters

Mean Values of Linear Thermal Expansion Coefficient
T [K] αt×106[K-1],||c αt×106[K-1],||c αt×106[K-1],||c
293–473 8.39 5.18 9.17
293–1173 9.9 8.2 12.8
Specific Heat Capacity cp at P =0.101325MPa
T [K] cp[J/kgK]    
373 729.7    
Thermal Conductivity Coefficient at T =293K
κ[W/mK],||X κ[W/mK],||Y κ[W/mK],||Z  
2.6 2.33 3.01  
Thermal Conductivity Coefficient at T =373K
κ[W/mK],||a κ[W/mK],||b κ[W/mK],||c  
1.83 1.72 2.17  
Linear Absorption Coefficient α
λ[µm] α[cm-1]    
0.21 1    
Experimental values of internal angular bandwidth for some specific phase-matching direction (SHG, type I, 0.946µm ⇒0.473µm) inYCOB crystal
Phase-matching direction Δ[deg]    
θ =67.9◦, Φ=136.8◦ 0.06    

Features

  • Electric resistivity is high

  • Temperature acceptance is high

  • Laser induce damage threshold is high

  • Less anisotropy

  • Thermal expansion coefficient is small

  • Less parametric luminescence

Applications

  • SHG(second-harmonic generation),THG(third-harmonic generation)

  • OPO(optical parametric oscillator)

  • OPA(optical parametric amplification)

  • OPCPA (optical parametric chirped-pulse amplification)

  • Piezoelectric acceleration sensors

  • Pressure sensors

  • Gas sensors

CONTACT DETAILS
Nanjing Crylink Photonics Co.,Ltd
No.3, Hengda Road, Economic and Technological Development Zone, Nanjing, China
No.200,Zhaoxian Road,Jiading District,Shanghai City
Nanjing
Jiangsu
210038
China
Tel: (86)025-68790684
Fax: (86)025-68790685
Email Us
Web Site
© 2024 SPIE Europe
Top of Page