22 May 2019 Description
β-BBO Nonlinear Crystal—a widely used nonlinear crystal for frequency conversion in the ultraviolet, visible and near-infrared
As one of the most important nonlinear optical crystals, beta-barium borate (β-BaB2O4,β-BBO) combines many outstanding features such as its high nonlinear optical coefficients, low group-velocity dispersion, broad transparency range (189–3500 nm) and high damage threshold. This unique combination ensures β-BBO crystal a promising candidate for a wide range of nonlinear optical applications such as frequency converters and optical parametric oscillators. In the realm of quantum optics, β-BBO crystal can be used to generate entangled photon pairs and ten-photon entanglement.
BBO is a negative uniaxial crystal, which provides phase matching for various second-order interactions almost over its entire transparency range (from 185 nm to 3.3 µm, as deduced from the transmittance measurements using crystal samples of several mm thickness), making it a widely used crystal for nonlinear frequency conversion in the ultraviolet, visible and near-infrared. In that regard, BBO is the most important nonlinear crystal for near infrared optical parametric chirped pulse amplifiers, which currently deliver few optical cycle pulses with high average and ultrahigh peak powers.
Parameter
Physical and Chemical Properties
Property |
Value |
Chemical formula |
BaB2O4 |
Crystal structure |
trigonal, 3m |
Lattice Parameter |
a=b=12.532Å,c=12.717Å, Z=6 |
Mass density |
3.85 g/cm3 |
Moh hardness |
4 |
Melting point |
About 1095°C |
Thermal conductivity |
1.2 W/m/K (⊥c); 1.6 W/m/K (//c) |
Thermal expansion coefficient |
α,4×10-6/K; c,36×10-6/K |
Birefringence |
negative uniaxial |
Linear Optical Properties
Property |
Value |
Transparency Range |
189 – 3500 nm |
Absorption Coefficient |
α<0.1%/cm @1064nm |
RefractiveIndices |
|
at 1.0642 μm
at 0.5321 μm
at 0.2660 μm
|
ne = 1.5425, no = 1.6551
ne = 1.5555, no = 1.6749
ne = 1.6146, no = 1.7571
|
Sellmeier Equations(λ in μm) |
no2(λ) = 2.7359+0.01878/(λ2-0.01822)-0.01354λ2
ne2(λ) = 2.3753+0.01224/(λ2-0.01667)-0.01516λ2
|
Nonlinear Optical Properties
Property |
Value |
SHG Phase Matchable Range |
409.6 ∼ 3500nm (Type I); 525 ∼ 3500nm (TypeII) |
NLO coefficients |
d11= 5.8 x d36(KDP); d31 = 0.05 x d11; d22< 0.05 x d11 |
deff(I)=d31sinθ+ (d11cos3φ – d22sin3φ)cosθ |
deff(II)=(d11sin3φ+ d22cos3θ)cos2θ |
Therm-Optic Coefficients |
dno/dT = – 9.3 x 10-6/◦C |
dne/dT = -16.6 x 10-6/◦C |
Electro-Optic Coefficients |
g11= 2.7 pm/V, g22, g31< 0.1 g11 |
Half-Wave Voltage |
48 KV (at 1064 nm) |
Damage Threshold |
|
at 1.064 μm |
5 GW/cm2 (10 ns); 10 GW/cm2 (1.3 ns) |
at 0.532 μm |
1 GW/cm2 (10 ns); 7 GW/cm2 (250 ps) |
Linear Absorption Coefficient
λ[µm] |
α [cm-1] |
Note |
0.1934 |
1.39 |
T =295K |
0.29 |
T =91K |
0.213 |
<0.21 |
best crystals |
0.264 |
0.04±0.01 |
||c |
0.06±0.003 |
⊥c, o-wave |
0.10±0.003 |
⊥c, e-wave |
0.2661 |
<0.17 |
best crystals |
0.04–0.15 |
|
0.5321 |
0.01 |
|
<0.01 |
|
1 |
0.001–0.002 |
|
1.0642 |
<0.001 |
|
2.09 |
0.0085 |
e-wave |
0.07 |
o-wave |
2.55 |
0.5 |
|
Two-photon Absorption Coefficient
λ[µm] |
τp [ns] |
β×1011[cm/W] |
Note |
0.211 |
0.0009 |
243±85 |
θ =30◦, φ =0◦ |
0.264 |
0.0008 |
93±33 |
θ =30◦, φ =0◦ |
0.00022 |
68±6 |
||c |
|
66±7 |
⊥c, o-wave |
|
47±5 |
⊥c, e-wave |
0.0002 |
61 |
θ =48° |
0.2661 |
0.015 |
90±10 |
||c |
0.3547 |
0.017 |
1.0±0.2 |
||c |
Experimental Values of Refractive Indices
λ[µm] |
no |
ne |
0.40466 |
1.69267 |
1.56796 |
0.43583 |
1.68679 |
1.56376 |
0.46782 |
1.68198 |
1.56024 |
0.47999 |
1.68044 |
1.55914 |
0.50858 |
1.67722 |
1.55691 |
0.54607 |
1.67376 |
1.55465 |
0.57907 |
1.67131 |
1.55298 |
0.58930 |
1.67049 |
1.55247 |
0.64385 |
1.66736 |
1.55012 |
0.81890 |
1.66066 |
1.54589 |
0.85212 |
1.65969 |
1.54542 |
0.89435 |
1.65862 |
1.54469 |
1.01400 |
1.65608 |
1.54333 |
Nonlinear Refractive Index
λ[µm] |
γ×1015[cm2/W] |
Note |
0.2661 |
0.025±0.008 |
||c |
0.3547 |
0.36±0.08 |
||c |
0.5321 |
0.55±0.10 |
||c |
0.78 |
0.40±0.05 |
[100] direction |
0.32±0.05 |
[010] direction |
0.85 |
0.37 ±0.06 |
θ =29.2˚, φ =0◦ |
1.0642 |
0.29 ±0.05 |
||c |
Experimental Values of Phase-matching Angle (T =293K)
Interacting wavelengths[μm] |
θexp [deg] |
SHG, o+o ⇒ e
|
|
0.4096⇒0.2048 |
90 |
0.41⇒0.20 |
90 |
0.41152⇒0.20576 |
82.8 |
0.41546⇒0.20773 |
79.2 |
0.418⇒0.209 |
77.3 |
0.429⇒0.2145 |
71 |
0.4765⇒0.23825 |
57 |
0.488⇒0.244 |
54.5 |
0.4965⇒0.24825 |
52.5 |
0.5106⇒0.2553 |
50/50.6 |
0.5145⇒0.25725 |
49.5 |
0.5321⇒0.26605 |
47.3/47.5/47.6/48 |
0.589⇒0.2945 |
41.5 |
0.604⇒0.302 |
40 |
0.6156⇒0.3078 |
39 |
0.616⇒0.308 |
38 |
0.70946⇒0.35473 |
32.9/33/33.1/33.3/33.7 |
0.78⇒0.39 |
31/30 |
0.8⇒0.4 |
26.5 |
0.946⇒0.473 |
24.9 |
1.0642⇒0.5321 |
22.7/22.8 |
SFG, o+o ⇒ e
|
|
0.73865+0.25725⇒0.1908 |
81.7 |
0.72747+0.26325⇒0.1933 |
76 |
0.5922+0.2961⇒0.1974 |
88 |
0.5964+0.2982⇒0.1988 |
82.5 |
0.5991+0.29955⇒0.1997 |
80 |
0.60465+0.30233⇒0.20155 |
76.2 |
0.5321+0.32561⇒0.202 |
83.9 |
0.6099+0.30495⇒0.2033 |
73.5 |
0.5321+0.34691⇒0.21 |
71.9 |
0.7736+0.25787⇒0.1934 |
70.7 |
0.5321+0.35473⇒0.21284 |
70 |
0.51567+0.38675⇒0.221 |
64.7 |
0.804+0.268⇒0.201 |
64 |
0.75+0.375⇒0.25 |
61.7 |
1.0642+0.26605⇒0.21284 |
51.1 |
0.78+0.373⇒0.2523 |
47.4 |
1.0642+0.298⇒0.23281 |
46.1 |
0.5782+0.5106⇒0.27115 |
46 |
0.59099+0.5321⇒0.28 |
44.7 |
0.78+0.43⇒0.2772 |
43.4 |
1.0642+0.35473⇒0.26605 |
40.2 |
1.0641+0.53205⇒0.3547 |
31.3 |
1.0642+0.5321⇒0.35473 |
31.1/31.3/31.4 |
2.68823+0.5712⇒0.4711 |
21.8 |
1.41831+1.0642⇒0.608 |
21 |
SHG, e+o ⇒ e
|
|
0.5321⇒0.26605 |
81 |
0.70946⇒0.35473 |
48/48.1 |
1.0642⇒0.5321 |
31.6/32.4/32.7/32.9 |
SFG, e+o ⇒ e
|
|
1.0642+0.35473⇒0.26605 |
46.6 |
1.0642+0.5321⇒0.35473 |
38.4/38.5 |
SFG, o+e ⇒ e
|
|
1.0642+0.5321⇒0.35473 |
59.8 |
Experimental Values of Internal Angular, Temperature, and Spectral Bandwidths at T =293K
Interacting wavelengths[μm] |
θpm [deg] |
Δθint [deg] |
ΔT [℃] |
Δν[cm-1] |
SHG, o+o ⇒ e |
1.0642⇒0.5321 |
22.8 |
0.021 |
37 |
9.7 |
22.7 |
0.03 |
51 |
|
0.5321⇒0.26605 |
47.3 |
0.01 |
4 |
|
0.53⇒0.265 |
47.6(298K) |
0.006 |
|
|
SFG, o+o ⇒ e |
|
|
|
|
1.0641+0.53205⇒0.3547 |
31.3 |
0.011 |
|
|
1.0642+0.5321⇒0.35473 |
31.1 |
0.015 |
16 |
|
2.44702+0.5712⇒0.4631 |
22.1 |
0.026 |
|
|
2.68823+0.5712⇒0.4711 |
21.8 |
0.028 |
|
|
SHG, e+o ⇒ e |
|
|
|
|
1.0642⇒0.5321 |
32.7 |
0.034 |
|
8.8 |
32.4 |
0.046 |
37 |
|
SFG, e+o ⇒ e |
|
|
|
|
1.0642+0.5321⇒0.35473 |
38.4 |
0.02 |
13 |
|
SFG, o+e ⇒ e |
|
|
|
|
1.0642+0.5321⇒0.35473 |
58.4 |
0.05 |
12 |
|
Temperature Variation of Phase-matching Angle at T =293K
Interacting wavelengths[μm] |
θpm [deg] |
dθpm/dT[deg/K] |
SHG, o+o ⇒ e |
|
|
0.5321⇒0.26605 |
47.3 |
0.0025 |
1.0642⇒0.5321 |
22.7 |
0.00057 |
SFG, o+o ⇒ e |
|
|
1.0642+0.5321⇒0.35473 |
31.1 |
0.00099 |
SHG, e+o ⇒ e |
|
|
1.0642⇒0.5321 |
32.4 |
0.0012 |
SFG, e+o ⇒ e |
|
|
1.0642+0.5321⇒0.35473 |
38.4 |
0.0015 |
SFG, o+e ⇒ e |
|
|
1.0642+0.5321⇒0.35473 |
58.4 |
0.00421 |
Calculated Values of Inverse Group-velocity Mismatch for SHG Process in BBO
Interacting wavelengths[μm] |
θpm [deg] |
β[fs/mm] |
SHG, o+o ⇒ e |
|
|
1.2⇒0.6 |
21.18 |
54 |
1.1⇒0.55 |
22.28 |
76 |
1.0⇒0.5 |
23.85 |
104 |
0.9⇒0.45 |
26.07 |
141 |
0.8⇒0.4 |
29.18 |
194 |
0.7⇒0.35 |
33.65 |
275 |
0.6⇒0.3 |
40.47 |
415 |
1.0642+0.5321⇒0.35473 |
38.4 |
0.0015 |
SHG, e+o ⇒ e |
|
|
1.2⇒0.6 |
29.91 |
103 |
1.1⇒0.55 |
31.46 |
130 |
1.0⇒0.5 |
33.73 |
164 |
0.9⇒0.45 |
36.98 |
210 |
0.8⇒0.4 |
41.67 |
276 |
0.7⇒0.35 |
48.74 |
373 |
0.6⇒0.3 |
60.91 |
531 |
Laser-induced Bulk Damage Threshold
λ[µm] |
τp[ns] |
Ithr[GW/cm2] |
Note |
0.2661 |
10 |
0.3 |
10Hz |
8 |
>0.12 |
|
|
2 |
grown by Czochralski method (CZ-BBO) |
|
3 |
grown by flux method (flux-BBO) |
|
3.4 |
CZ-BBO, annealed at 1193K (50 hours) |
0.308 |
12 |
>0.2 |
|
0.3547 |
10 |
0.9 |
10Hz |
8 |
25 |
1pulse |
|
19 |
1800pulses |
0.03 |
>0.4 |
10Hz |
0.015 |
>3 |
|
0.4 |
0.0002 |
>150 |
10Hz |
0.5106 |
20 |
>0.25 |
4kHz |
0.51–0.58 |
20 |
10 |
|
0.5145 |
CW |
>0.0004 |
|
0.5321 |
10 |
2.3 |
10Hz |
8 |
48 |
1pulse |
|
32 |
1800pulses |
0.62 |
0.0002 |
>50 |
|
0.6943 |
0.02 |
10 |
|
0.8 |
0.000025 |
>3400 |
1–5kHz |
0.85 |
0.00025 |
>93 |
1kHz |
1.054 |
0.005 |
50 |
|
1.0642 |
14 |
50 |
1pulse |
|
23 |
1800pulses |
10 |
4.5 |
10Hz |
Laser-induced Surface Damage Threshold
λ[µm] |
τp[ns] |
Ithr[GW/cm2] |
Note |
0.266 |
10 |
0.15 |
10Hz |
0.355 |
10 |
0.50 |
10Hz |
0.51–0.58 |
20 |
1 |
4–14kHz |
0.532 |
10 |
1.3 |
10Hz |
1.064 |
10 |
2.6 |
10Hz |
Other Parameters
Linear Thermal Expansion Coefficient |
T [K] |
αt×106[K-1],||c |
αt×106[K-1],⊥c |
293 |
0.36 |
-2.54 |
Mean Value of Linear Thermal Expansion Coefficient |
T [K] |
αt×106[K-1],||c |
αt×106[K-1],⊥c |
298-1173 |
36 |
4 |
Specific Heat Capacity at P =0.101325MPa |
T [K] |
cp[J/kgK] |
|
298 |
490/496 |
|
Thermal Conductivity Coefficient |
K[W/mK] ,||c |
K[W/mK] ,⊥c |
|
0.8 |
0.08 |
|
1.6 |
1.2 |
|
Spectrums
Features
-
The range of transmission is from 190 nm to 3500nm
-
Good physical properties
-
Appropriate mechanical properties
-
Effective SHG(Second-harmonic generation) coefficient is large
-
Damage threshold of 100 ps pulse with 10 J/cm2 at 1064 nm
-
The range of phase matching is large from 409.6 nm to 3500nm
-
Temperature bandwidth is about 55℃
-
Optical homogeneity is high:δn≈10-6/cm
Applications
Material Processing
Optical Communication
Radar and Ranging
Medical Applications
|