Optics.org
daily coverage of the optics & photonics industry and the markets that it serves
Featured Showcases
Photonics West Showcase
Optics+Photonics Showcase
Products
Menu
Product Announcement

BBO Nonlinear Crystal

22 May 2019

Description

β-BBO Nonlinear Crystal—a widely used nonlinear crystal for frequency conversion in the ultraviolet, visible and near-infrared

As one of the most important nonlinear optical crystals, beta-barium borate (β-BaB2O4,β-BBO) combines many outstanding features such as its high nonlinear optical coefficients, low group-velocity dispersion, broad transparency range (189–3500 nm) and high damage threshold. This unique combination ensures β-BBO crystal a promising candidate for a wide range of nonlinear optical applications such as frequency converters and optical parametric oscillators. In the realm of quantum optics, β-BBO crystal can be used to generate entangled photon pairs and ten-photon entanglement.

BBO is a negative uniaxial crystal, which provides phase matching for various second-order interactions almost over its entire transparency range (from 185 nm to 3.3 µm, as deduced from the transmittance measurements using crystal samples of several mm thickness), making it a widely used crystal for nonlinear frequency conversion in the ultraviolet, visible and near-infrared. In that regard, BBO is the most important nonlinear crystal for near infrared optical parametric chirped pulse amplifiers, which currently deliver few optical cycle pulses with high average and ultrahigh peak powers.

Parameter

Physical and Chemical Properties

Property Value
Chemical formula BaB2O4
Crystal structure trigonal, 3m
Lattice Parameter a=b=12.532Å,c=12.717Å, Z=6
Mass density 3.85 g/cm3
Moh hardness 4
Melting point About 1095°C
Thermal conductivity 1.2 W/m/K (⊥c); 1.6 W/m/K (//c)
Thermal expansion coefficient α,4×10-6/K; c,36×10-6/K
Birefringence negative uniaxial

Linear Optical Properties

Property Value
Transparency Range 189 – 3500 nm
Absorption Coefficient α<0.1%/cm @1064nm
RefractiveIndices  

at 1.0642 μm

at 0.5321 μm

at 0.2660 μm

ne = 1.5425, no = 1.6551

ne = 1.5555, no = 1.6749

ne = 1.6146, no = 1.7571

Sellmeier Equations(λ in μm)

no2(λ) = 2.7359+0.01878/(λ2-0.01822)-0.01354λ2

ne2(λ) = 2.3753+0.01224/(λ2-0.01667)-0.01516λ2

Nonlinear Optical Properties

Property Value
SHG Phase Matchable Range 409.6 ∼ 3500nm (Type I); 525 ∼ 3500nm (TypeII)
NLO coefficients d11= 5.8 x d36(KDP); d31 = 0.05 x d11; d22< 0.05 x d11
deff(I)=d31sinθ+ (d11cos3φ – d22sin3φ)cosθ
deff(II)=(d11sin3φ+ d22cos3θ)cos2θ
Therm-Optic Coefficients dno/dT = – 9.3 x 10-6/◦C
dne/dT = -16.6 x 10-6/◦C
Electro-Optic Coefficients g11= 2.7 pm/V, g22, g31< 0.1 g11
Half-Wave Voltage 48 KV (at 1064 nm)
Damage Threshold  
 at 1.064 μm 5 GW/cm2 (10 ns); 10 GW/cm2 (1.3 ns)
 at 0.532 μm 1 GW/cm2 (10 ns); 7 GW/cm2 (250 ps)

Linear Absorption Coefficient

λ[µm] α [cm-1] Note
0.1934 1.39 T =295K
0.29 T =91K
0.213 <0.21 best crystals
0.264 0.04±0.01 ||c
0.06±0.003 ⊥c, o-wave
0.10±0.003 ⊥c, e-wave
0.2661 <0.17 best crystals
0.04–0.15  
0.5321 0.01  
<0.01  
1 0.001–0.002  
1.0642 <0.001  
2.09 0.0085 e-wave
0.07 o-wave
2.55 0.5  

Two-photon Absorption Coefficient

λ[µm] τp [ns] β×1011[cm/W] Note
0.211 0.0009 243±85  θ =30◦, φ =0◦
0.264 0.0008  93±33  θ =30◦, φ =0◦
0.00022 68±6 ||c
  66±7 ⊥c, o-wave
  47±5 ⊥c, e-wave
0.0002 61 θ =48°
0.2661 0.015 90±10 ||c
0.3547 0.017 1.0±0.2 ||c

Experimental Values of Refractive Indices

λ[µm] no ne
0.40466 1.69267 1.56796
0.43583 1.68679 1.56376
0.46782 1.68198 1.56024
0.47999 1.68044 1.55914
0.50858 1.67722 1.55691
0.54607 1.67376 1.55465
0.57907 1.67131 1.55298
0.58930 1.67049 1.55247
0.64385 1.66736 1.55012
0.81890 1.66066 1.54589
0.85212 1.65969 1.54542
0.89435 1.65862 1.54469
1.01400 1.65608 1.54333

Nonlinear Refractive Index

λ[µm] γ×1015[cm2/W] Note
0.2661 0.025±0.008 ||c
0.3547 0.36±0.08 ||c
0.5321 0.55±0.10 ||c
0.78 0.40±0.05 [100] direction
0.32±0.05 [010] direction
0.85 0.37 ±0.06 θ =29.2˚, φ =0◦
1.0642 0.29 ±0.05 ||c

Experimental Values of Phase-matching Angle (T =293K)

Interacting wavelengths[μm]  θexp [deg]

SHG, o+o ⇒ e

 
0.4096⇒0.2048 90
0.41⇒0.20 90
0.41152⇒0.20576 82.8
0.41546⇒0.20773 79.2
0.418⇒0.209 77.3
0.429⇒0.2145 71
0.4765⇒0.23825 57
0.488⇒0.244 54.5
0.4965⇒0.24825 52.5
0.5106⇒0.2553 50/50.6
0.5145⇒0.25725 49.5
0.5321⇒0.26605 47.3/47.5/47.6/48
0.589⇒0.2945 41.5
0.604⇒0.302 40
0.6156⇒0.3078 39
0.616⇒0.308 38
0.70946⇒0.35473 32.9/33/33.1/33.3/33.7
0.78⇒0.39 31/30
0.8⇒0.4 26.5
0.946⇒0.473 24.9
1.0642⇒0.5321 22.7/22.8

SFG, o+o ⇒ e

 
0.73865+0.25725⇒0.1908 81.7
0.72747+0.26325⇒0.1933 76
0.5922+0.2961⇒0.1974 88
0.5964+0.2982⇒0.1988 82.5
0.5991+0.29955⇒0.1997 80
0.60465+0.30233⇒0.20155 76.2
0.5321+0.32561⇒0.202 83.9
0.6099+0.30495⇒0.2033 73.5
0.5321+0.34691⇒0.21 71.9
0.7736+0.25787⇒0.1934 70.7
0.5321+0.35473⇒0.21284 70
0.51567+0.38675⇒0.221 64.7
0.804+0.268⇒0.201 64
0.75+0.375⇒0.25 61.7
1.0642+0.26605⇒0.21284 51.1
0.78+0.373⇒0.2523 47.4
1.0642+0.298⇒0.23281 46.1
0.5782+0.5106⇒0.27115 46
0.59099+0.5321⇒0.28 44.7
0.78+0.43⇒0.2772 43.4
1.0642+0.35473⇒0.26605 40.2
1.0641+0.53205⇒0.3547 31.3
1.0642+0.5321⇒0.35473 31.1/31.3/31.4
2.68823+0.5712⇒0.4711 21.8
1.41831+1.0642⇒0.608 21

SHG, e+o ⇒ e

 
0.5321⇒0.26605 81
0.70946⇒0.35473 48/48.1
1.0642⇒0.5321 31.6/32.4/32.7/32.9

SFG, e+o ⇒ e

 
1.0642+0.35473⇒0.26605 46.6
1.0642+0.5321⇒0.35473 38.4/38.5

SFG, o+e ⇒ e

 
1.0642+0.5321⇒0.35473 59.8

Experimental Values of Internal Angular, Temperature, and Spectral Bandwidths at T =293K

Interacting wavelengths[μm]  θpm [deg] Δθint [deg] ΔT [℃]  Δν[cm-1]
SHG, o+o ⇒ e
1.0642⇒0.5321 22.8 0.021 37 9.7
22.7 0.03 51  
0.5321⇒0.26605 47.3 0.01 4  
0.53⇒0.265 47.6(298K) 0.006    
SFG, o+o ⇒ e        
1.0641+0.53205⇒0.3547 31.3 0.011    
1.0642+0.5321⇒0.35473 31.1 0.015 16  
2.44702+0.5712⇒0.4631 22.1 0.026    
2.68823+0.5712⇒0.4711 21.8 0.028    
SHG, e+o ⇒ e        
1.0642⇒0.5321 32.7 0.034   8.8
32.4 0.046 37  
SFG, e+o ⇒ e        
1.0642+0.5321⇒0.35473 38.4 0.02 13  
SFG, o+e ⇒ e        
1.0642+0.5321⇒0.35473 58.4 0.05 12  

Temperature Variation of Phase-matching Angle at T =293K

Interacting wavelengths[μm]   θpm [deg] dθpm/dT[deg/K]
SHG, o+o ⇒ e    
0.5321⇒0.26605 47.3 0.0025
1.0642⇒0.5321 22.7 0.00057
SFG, o+o ⇒ e    
1.0642+0.5321⇒0.35473 31.1 0.00099
SHG, e+o ⇒ e    
1.0642⇒0.5321 32.4 0.0012
SFG, e+o ⇒ e     
1.0642+0.5321⇒0.35473 38.4 0.0015
SFG, o+e ⇒ e    
1.0642+0.5321⇒0.35473 58.4 0.00421

Calculated Values of Inverse Group-velocity Mismatch for SHG Process in BBO

Interacting wavelengths[μm] θpm [deg] β[fs/mm]
SHG, o+o ⇒ e    
1.2⇒0.6 21.18 54
1.1⇒0.55 22.28 76
1.0⇒0.5 23.85 104
0.9⇒0.45 26.07 141
0.8⇒0.4 29.18 194
0.7⇒0.35 33.65 275
0.6⇒0.3 40.47 415
1.0642+0.5321⇒0.35473 38.4 0.0015
SHG, e+o ⇒ e    
1.2⇒0.6 29.91 103
1.1⇒0.55 31.46 130
1.0⇒0.5 33.73 164
0.9⇒0.45 36.98 210
0.8⇒0.4 41.67 276
0.7⇒0.35 48.74 373
0.6⇒0.3 60.91 531

Laser-induced Bulk Damage Threshold

λ[µm] τp[ns] Ithr[GW/cm2] Note
0.2661 10 0.3 10Hz
  8 >0.12  
  2 grown by Czochralski method (CZ-BBO)
  3 grown by flux method (flux-BBO)
  3.4 CZ-BBO, annealed at 1193K (50 hours)
0.308 12 >0.2  
0.3547 10 0.9 10Hz
8 25 1pulse
  19 1800pulses
0.03 >0.4 10Hz
0.015 >3  
0.4 0.0002 >150 10Hz
0.5106 20 >0.25 4kHz
0.51–0.58 20 10  
0.5145 CW >0.0004  
0.5321 10 2.3 10Hz
8 48 1pulse
  32 1800pulses
0.62 0.0002 >50  
0.6943 0.02 10  
0.8 0.000025 >3400 1–5kHz
0.85 0.00025 >93 1kHz
1.054 0.005 50  
1.0642 14 50 1pulse
  23 1800pulses
10 4.5 10Hz

Laser-induced Surface Damage Threshold

λ[µm] τp[ns] Ithr[GW/cm2] Note
0.266 10 0.15 10Hz
0.355 10 0.50 10Hz
0.51–0.58 20 1 4–14kHz
0.532 10 1.3 10Hz
1.064 10 2.6 10Hz

Other Parameters

Linear Thermal Expansion Coefficient
T [K] αt×106[K-1],||c αt×106[K-1],⊥c
293 0.36 -2.54
Mean Value of Linear Thermal Expansion Coefficient
T [K] αt×106[K-1],||c αt×106[K-1],⊥c
298-1173 36 4
Specific Heat Capacity  at P =0.101325MPa
T [K] cp[J/kgK]  
298 490/496  
Thermal Conductivity Coefficient
K[W/mK] ,||c K[W/mK] ,⊥c  
0.8 0.08  
1.6 1.2  

Spectrums

Features

  • The range of transmission is from 190 nm to 3500nm

  • Good physical properties

  • Appropriate mechanical properties

  • Effective SHG(Second-harmonic generation) coefficient is large

  • Damage threshold of 100 ps pulse with 10 J/cm2 at 1064 nm

  • The range of phase matching is large from 409.6 nm to 3500nm

  • Temperature bandwidth is about 55℃

  • Optical homogeneity is high:δn≈10-6/cm

Applications

Material Processing

Optical Communication

Radar and Ranging

Medical Applications

CONTACT DETAILS
Nanjing Crylink Photonics Co.,Ltd
No.3, Hengda Road, Economic and Technological Development Zone, Nanjing, China
No.200,Zhaoxian Road,Jiading District,Shanghai City
Nanjing
Jiangsu
210038
China
Tel: (86)025-68790684
Fax: (86)025-68790685
Email Us
Web Site
© 2024 SPIE Europe
Top of Page