Optics.org
daily coverage of the optics & photonics industry and the markets that it serves
Featured Showcases
Photonics West Showcase
News
Menu
Research & Development

German partners developing 'ultra-short pulse laser of the future'

19 Feb 2017

Trumpf, Schott and Bosch involved in project ScULPT to produce new source for with tenfold increase in productivity for materials processing.

Industrial laser giant Trumpf has announced its leadership of a new joint research project, intended to create what it calls “the ultra-short pulse laser of the future”.

The project named “Scaling Ultrafast Laser Productive Precision Processing Technology” – ScULPT – was set up by partners from science and industry with the aim of developing an efficient, powerful, ultra-short pulsed laser system for machining different types of glass and metals with a tenfold increase in throughput.

Dr. Dirk Sutter, head of ultra-short pulse laser development at Trumpf and coordinating the research activities, explained, “Our goal is to drastically reduce the processing cost per part in order to make new applications economically viable.”

To enable this breakthrough, a significant increase of the output power available from industrial grade ultra-short pulse lasers, such as Trumpf’s TruMicro series is required.

High precision

With their high pulse peak powers of several gigawatts and extremely short pulse durations, ultra-short pulse lasers are ideal tools for high-precision machining of many materials including, for example, the high-strength cover glasses used for optical displays.

However, nowadays the volume of material that can be modified or removed with each laser pulse – and therefore the resulting process throughput – is limited by the available laser pulse energy. This limitation sets the starting point for the new ScULPT project where the partners will be aiming to accelerate process throughput at least proportionally in relation to the increase in laser power.

New beam sources aside, transforming increased laser power into faster machining processes requires additional developments which also form part of the ScULPT project. These include the construction of application-specific machining modules with suitable, fiber-based beam guidance and beam shape adaptations for individual processes, as well as optimized synchronization between laser and beam scanning systems.

Entire value chain

The ScULPT project team is formed by several major German engineering companies: Trumpf, Schott and Bosch; as well as the Universities of Jena (Institute for Applied Physics) and Stuttgart (Institut für Strahlwerkzeuge).

Between them, the project partners believe they have the necessary expertise to cover the entire value chain from basic research, ruggedization of beam sources, to laser machining of glasses and metals on an industrial scale.

The joint research project is receiving financial support over a three year period from the German Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany. Project administration is provided by the VDI Technologiezentrum.

LASEROPTIK GmbHOmicron-Laserage Laserprodukte GmbHLaCroix Precision OpticsJenLab GmbHABTechCeNing Optics Co LtdECOPTIK
© 2024 SPIE Europe
Top of Page