Industry 4.0 and photonics: “the perfect fit”

In a sweeping, futuristic Photonics West keynote talk about a world of “digital twins” of real objects, Reinhart Poprawe, director of the Fraunhofer Institute of Laser Technology (ILT) in Aachen, Germany, described a new industrial revolution.

“Shadow twins” will help design production processes and in turn help shape actual products built using additive and subtractive laser techniques, Poprawe predicted. In short, the production system will help design the product. And in that future, he expects to see “practically all manufacturing processes using lasers.”

Poprawe showed examples from metal cutting to beam propagation in glass, to printing of biocompatible photopolymers, saying “each individual pulse is controlled by the shadow in the computer.” That shadow will tailor laser processes to the geometry of the object, for “fast and frugal simulation” in the laboratory.

All this, he said, captures the spirit of what in Germany has been referred to as “Industry 4.0” for some time, with the term now gaining more global traction. It covers an industrial approach of thinking where digital photonic production is believed to be a perfect fit. The “4.0” refers to the series of revolutions from human labor, to steam and coal, and on to electronics and computers, to today’s integrated platforms for software and automated physical systems.

“It is amazing what can be done in tailoring material properties in space and time,” Poprawe said. “The product functionality will be translated into design geometry and materials.”

Industry will put aside standard older machines, he added, showing delegates a 3D printing approach that will use five-dot exposure systems, although the “ultimate” system would incorporate up to several hundred such dots.

As a consequence, Poprawe expects to see a remarkable 30-fold increase in productivity. In perhaps just a few months, or certainly a very few years, he said, such approaches will start to become available to the market.

The ILT director urged greater collaboration between industry and universities, following the model shown by the campus of RWTH Aachen University, where Poprawe is the chair for laser technology and director of the Center for Digital Photonic Production.

“A single source of truth is not the state-of-the-art today,” he said. “We have to combine all these sources of truth.”

Poprawe added: “We believe nobody can do it alone. We need a very good chance to match what we understand by the Fourth Industrial Revolution.”

FORD BURKHART
OptoSigma
Light Solutions for Life®

TAKE A NEW LOOK
Spin to Win
Online Discounts
Daily Prizes

Join us for Refreshments
Tuesday & Wednesday - 4pm

Optics | Optomechanics | Motion Control
Vibration Isolation | Much More

SOUTH HALL - BOOTH #307
Hell, Deisseroth detail microscopy and neuroscience challenges

The BiOS plenary session proved to be a master class in super-resolution microscopy and optogenetics for studying neural circuit dynamics. Two high-profile speakers — 2014 Nobel Laureate Stefan Hell of the Max Planck Institute and optogenetics pioneer Karl Deisseroth, of Stanford University — covered a breadth of critical technologies and applications in their respective presentations.

Hell, who shared the 2014 Nobel Prize in Chemistry with W.E. Moerner and Eric Betzig for the development of super-resolution fluorescence microscopy, took a “post-Nobel” look at the current state-of-the-art in super-resolution microscopy, focusing on far-field fluorescence nanoscopy, a technique that actually achieves molecular size (1 nm) resolution.

Among other things, Hell is credited with having conceived, validated, and applied STED (stimulated emission depletion) microscopy, the first viable concept for breaking the diffraction-limited resolution barrier in a light-focusing microscope. It is one of several types of super-resolution microscopy techniques that developed to bypass the diffraction limit of light microscopy to increase resolution.

And yet, Hell pointed out in his presentation Sunday evening, these techniques still have not quite been able to obtain 1nm spatial resolution. In practice, he says, the reality is more like 20 nm. “If you separate by focusing light, you are limited by diffraction,” he said. “We had to realize not to separate features by focusing, but to separate them by molecular states. And STED microscopy was the first to do this, to sequentially separate molecules by keeping them in the off/on state.”

He sees promise in MINFLUX, a new far-field fluorescence nanoscopy method that combines the advantages of STED with the principles of PALM (photo-activated localization microscopy). In PALM, single molecules are also excited by switching them on and off, but these molecules light up randomly versus being targeted as in STED.

Together, they harness a local intensity minimum of a doughnut laser or standing wave laser to determine the coordinates of the fluorophore(s) to be registered, using an intensity minimum of the excitation light to establish the fluorophore position. The result is molecular size (1nm) localization precision 100 times higher than conventional light microscopy and about 20 times higher than super-resolution light microscopy.

Hell said MINFLUX microscopes have the potential to become one of the most fundamental tools of cell biology, making it possible to map cells in molecular detail and to observe the rapid processes in their interior in real time. “So now we can track the position of the molecule with high precision and increase the speed of recording without the need for fluorescence,” he said.

Deisseroth is working to shed new light on how the brain determines human behavior. While he is best known for his work in optogenetics, Deisseroth is a neuroscientist who is also a practicing psychiatrist, and this has influenced his research for many years.

“I am a psychiatrist, but I run a basic science lab, and we are interested in understanding problems and functions of neural circuits,” he said. Deisseroth noted that the discovery of structural principles in a microbial protein helped illuminate the pathophysiology of psychiatry, and now “we want to collect multiple kinds of data streams and bring them together.”

For example, he said, “we collect information on brain-wide cellular resolution activity and anatomy in behaving vertebrates to help us understand how neural circuits actually work,” much like a cardiologist explains a damaged heart muscle to a patient.

“Multiple individual cell control is very powerful in principle for learning to understand how neural circuits are operating,” Deisseroth said. “What are these cells? We would like to know a lot more about them.”

KATHY KINCADE

Super-res technique suits lithography

Min Gu of RMIT University in Australia, a leading authority in nanophotonics, nanofabrication, biophotonics, and multi-dimensional optical data storage, put his “SPIN” on overcoming the diffraction limit in nanoscale optical and photonic devices during his plenary talk at OPTO this week. The devices are used in optical data storage, optical communications, 3D nanoprinting and nanometric displays.

“New approaches of removing the diffraction limit are needed to achieve petabytes of optical data storage,” said Gu, who was instrumental in the development of SPIN (super-resolution photoinhibition-nanolithography), a two-beam nanofabrication tool with a feature size of only tens of nanometers, far beyond the diffraction limit found in the popular direct laser writing (DLW) photolithography approach. As a result, SPIN is well suited to nanolithography; some SPIN-enabled nano-optoelectronics include artificial neurons, artificial grippers, artificial membranes, and 3D neural circuits.

“With SPIN, we are breaking the diffraction limit barriers,” Gu said. “We use the first laser beam to induce photoinhibition, then the second beam can achieve photoinhibition. If you overlap them, you can produce a much smaller focus spot with super-resolution.”

Gu’s team has also been looking at combining SPIN with STED (stimulated emission depletion microscopy) — another super-resolution microscopy method — for new applications in optical data storage. “Using two-photon photore sist for SPIN and STED, we combine them to do the read and write functions together,” he said.

Another talk at the OPTO plenary session focused on III-nitride nanowire LEDs and diode lasers for communications as well as silicon photonics, neural probes, and head-up displays. GaN-based nanowire and nanowire heterostructure arrays grown on (001) Si substrates for use in visible light sources have unique properties that make them attractive for those and other applications, said Pallab Bhattacharya of the University of Michigan. Over the last 40 years, Bhattacharya has been a pioneer in the development of visible and near-infrared lasers, including most recently 600-1300nm LEDs and edge-emitting diode lasers in the 10mW power range.

This work has included the development of InGaN nanowire heterostructure arrays that his lab grows using plasma-assisted molecular-beam epitaxy. These nanowires offer some key advantages for these light sources, especially in terms of quantum efficiencies, he noted.

“InGaN nanowires have a large surface-to-volume ratio, so they are relatively free of extended defects compared to planar GaN grown on lattice-mismatched templates,” he said. “In addition, radial relaxation during epitaxy leads to small polarization fields. The quantum efficiencies are quite large to start with; we optimize the growth conditions to balance the creation of defects at very low substrate temperatures with those at very high substrate temperatures.”

Bhattacharya said the emission wavelength of the light sources can be varied according to the composition in the InGaN disks, which can be inserted into the nanowires. Using this approach, Bhattacharya and his collaborators recently fabricated 1.3micron nanowire lasers on 001 (Si) with lasing at exactly 1.3 microns, and a simple photonic integrated circuit on silicon using the 1.3micron monolithic nanowire array.

“And it all works!” he said. They are now working with researchers at NASA to develop infrared detector arrays on silicon, something he says NASA is “very excited about.”

Andrew Rickman, a big name in the world of silicon photonics, made a convincing case in his talk for why bigger might be better when it comes to the design, manufacture, and integration of silicon photonics chips.

Rickman, the founder of Rockley Photonics, contends that, unlike the shrinking feature sizes in microelectronics fabrication, integrated photonics platforms should take advantage of larger geometries to boost optical efficiency and ease of coupling so that the silicon photonics industry can finally realize the promise of “silicon scale.”

KATHY KINCADE
Shimadzu, Nuburu hail blue power revolution

Japanese exhibitor Shimadzu is showing off recent developments in high-power blue laser diodes at its Photonics West booth, including a 100W multi-beam module, a welding machine based around the 100W module built by development partner Marutani, and a 3D printing system using the same photonics technology.

All the systems are based around high-power blue diode emitters provided by laser chip manufacturer Nichia, which has partnered with Osaka University scientists and Shimadzu on a four-year development project to bring what Shimadzu describes as the “blue revolution” to industrial laser processing.

During Monday’s conference sessions, Osaka researcher Masahiro Tsukamoto described the six-beam laser head design, which delivers power at around 455nm from multiple diodes operating at 39% efficiency. The design has been packaged into a 19-inch standard rack size format, and is on sale at booth #4945.

The equipment should prove particularly useful for welding reflective metals including gold and copper, which absorb much more strongly in the blue than at the more conventional infrared wavelengths used in laser welding. Tsukamoto outlined a development roadmap out to the end of the project in 2020, at which point a multi-kilowatt output from the six-beam head is envisaged.

During the same conference session, the Colorado-based 2018 Prism Awards finalist Nuburu described its development of what is claimed to be the world’s “first revolutionary high-power blue laser”. The 150W direct-diode system is based around “PLFM4” emitters provided by German laser diode maker Osram Opto Semiconductors.

Nuburu’s optical design features 160 actively designed micro-optical components and an 80mm-diameter aspheric lens to couple the blue light into a 200 micron optical fiber. It also uses a set of interlensing mirrors and a beam-expanding telescope, and the setup is being aimed at welding, cutting, and 3D printing applications.

Co-founded by former Nuvonyx chief Mark Zediker and Jean-Michel Pelaprat — previously Novalux CEO and general manager at laser giant Coherent — Nuburu says the technology will enable “radical” gains in speed and quality in existing metal processes, as well as unlocking a path to new designs for both conventional laser-metal machining and additive manufacturing. Specific applications are set to include sputter-free copper welding, potentially enabling new applications not addressable with infrared lasers.

Mike Hatcher
Measurement Station for Virtual Reality Optics
ImageMaster® Lab VR

Efficient Automated Alignment of Doublets with Air Manipulator
OptiCentric® 3D 100 with LensAlign 2D Air and Vacuum Unit

Innovative Technologies:

Universal Power and Wavefront Testing for Free-form Lenses
UniWave: New Technology Unbeatably Fast

High-speed Centration Measurement
OptiCentric® Linear: Rotation-free Inspection of Position-sensitive Lenses
Micro optics for laser diodes, enabling precise collimation and beam shaping.

High precision optics in the visible and infrared, enabling night vision, thermal imaging and remote sensing.

Microlenses and micro camera for endoscopy, enabling minimally invasive surgery and diagnostics.

Join us at Booth 1825

www.fisba.com
Lidar landscape shifts as big players join forces with new entrants

The emergence of lidar as a key technology for future autonomous vehicles ratched up throughout 2017, with major players including Ford, Airbus and Osram backing a raft of startups with their own particular takes on the photonics hardware.

By any measure the past year has been a remarkable one for lidar technology. Excitement about the prospects and potentially massive disruptive effect of autonomous vehicles has pushed this erstwhile photonics technology — lidar dates back to the early days of the laser, used in meteorology and by the Apollo 15 mission to map the lunar surface — right back up the tech agenda, with news of major investments on an almost weekly basis.

The plethora of startups, spin-outs and venture capital deals has, for some, recalled the days of the optical telecommunications boom of the late 1990s. In fact there are some more direct connections to that time, with the use of 1550 nm laser diodes first developed for optical fiber transmission, vertical cavity surface-emitting lasers (VCSELs) generally found in data centers, photonic integration schemes, and micro-optical electro-mechanical systems (MOEMS) all touted by their proponents for a critical future role.

Elsewhere in the lidar universe, October 2017 saw two of the auto industry’s biggest names — Ford and General Motors — respectively acquire lidar component and systems firms Princeton Lightwave and Strobe.

Everybody working in this space has the same ultimate aim: safer driving. Global estimates from the World Health Organization suggest that 94% of the 1.25 million road deaths recorded in 2013 were attributable to human error. Although that makes a compelling argument for replacing the error-prone humans in the driving seat with robots, sensors, and algorithms, there are still big questions over how and when exactly that transition will happen. What does seem clear is that a fusion of sensor data, almost certainly including lidar, is required.

That momentum was in evidence earlier this month at the Consumer Electronics Show (CES) in Las Vegas, with dozens of companies now working on lidar and related image processing, analysis and control technologies aimed at future self-driving applications, it seems inevitable that there will be some kind of shake-out before long. But for now, here’s our selection of the startups and more established companies to have made their presence felt over the past 12 months.

Luminar Technologies

Exhibiting at Photonics West this week, the California startup appeared with a bang in April 2017, buoyed by a $36 million round of seed finance. Co-founded by the young tech entrepreneur Austin Russell and former Ocean Optics executive Jason Eichenholz, Luminar’s bold claims of sensor performance are based around its adoption of a 1550 nm laser. It can take advantage of the more relaxed eye safety regulations at this wavelength to field significantly higher power — what Luminar’s executives describe as the “photon budget” — and therefore greater sensing range.

While that makes the core laser technology significantly more expensive than the shorter wavelengths more conventionally associated with lidar, Eichenholz and Russell expect the market impact of autonomous vehicles to be so disruptive, with self-driving cars carrying passengers on a near-continuous basis, that the higher price of multi-channel indium phosphide (InP) lasers and associated hardware will be acceptable to car makers.

The Luminar team followed up on its debut in the summer, showing off their technology atop a Mercedes van outside the Laser World of Photonics event in Munich, before in September Toyota’s research wing announced that it was testing out the technology on its “Guardian” and “Chauffeur” development vehicles.

Since then, Russell has further burnished his credentials with inclusion in both the Forbes “30under30” equivalent. At CES 2018, Toyota showcased its latest, “third generation” autonomous platform, which combines the 200 meter-range Luminar kit with
from the pioneers in sCMOS

the pco.panda 4.2 back illuminated with latest sCMOS technology

up to 95% quantum efficiency

6.5 µm pixelsize for a perfect fit in microscopy & life science optics

ultra compact design

Photonics West #1425

pcotech.com
Lidar continued from page 07

a number of shorter-range sensors. Luminar is actively
hiring for dozens of positions at its twin facilities in Palo
Alto and Orlando, Florida, and will be demonstrating its
lidar solution outside Hall D of the Moscone Center this
week. Eichenholz will give a keynote talk on the subject
in Room 21 on Thursday at 11am.

AEye

While most of its rivals are deploying lasers emitting at
shorter wavelengths, Luminar is not the only lidar com-
pany working with 1550nm light. Pleasanton-based AEye
is another California startup to adopt InP-based tech-
nology, with its pitch to provide the hardware, software
and algorithms that will come to represent the “eyes and
visual cortex” of future self-driving vehicles. In essence,
that means combining a lidar-generated 3D point cloud
with 2D machine vision, to generate a more recognisably
“human” view of a car’s surroundings.

In June 2017, AEye — previously known as “US LA-
DAR” — said that the venture wings of both Intel and
Airbus were among the investors in its $16 million round of
series A financing, alongside the high-profile venture
capital group Kleiner Perkins Caulfield and Byers.

Headed up by Luis Dussan, a graduate of the Uni-
versity of Central Florida’s famed College of Optics and
Photonics (CREOL), and with strong US military exper-
ience in its ranks, AEye went on to demonstrate its 360
degree, MOEMS-based, solid-state system in September,
claiming a range of 300 meters in live metropolitan tests.
“This is just the starting point for AEye,” said Dussan
at the time. “Our system’s use of intelligent sensing and
software-definable lidar (SDL) will catalyze rapid inno-
vation and world class perception capabilities, enabling
OEMs, Tier-1 suppliers, and mobility companies to suc-
cessfully tackle their toughest corner cases.”

In December, that was followed by the launch of a
partner development program for what AEye calls
“I DAR”, short for “intelligent detection and ranging”.
Said to mimic the way that the human visual cortex
evaluates potential driving hazards, the approach uses
beam-steering hardware and other proprietary tricks to
dramatically increase the frequency with which objects
in the field of view are “hit” with a laser pulse.

Potential adopters of AEye’s approach got a chance
to evaluate it at CES, where the company unveiled its
“AEioo” system. It is described as the world’s first agile
MOEMS lidar, “pre-fused and bore-sighted with a low-
light HD video camera”. Customizable with specifications
including a range of up to 400 meters and frame rates of
200 Hz, it is slated for initial release by mid-2018, with
a wider commercial launch shortly after.

LeddarTech

Also attempting to make an impact in Vegas was Cana-
da’s LeddarTech, spun out of the local National Optics
Institute (INO) more than a decade ago. In September
the Quebec City company revealed that Osram had ac-
quired a 25% stake in it, as part of a $101 million round of
series C finance.

Investing alongside Osram are parts giants Delphi
(now Activ), Magneti Marelli, and sensor specialist IDT
Automotive and Industrial. LeddarTech CEO Charles
Boulanger expects the lidar sector to become a multi-bil-
lion-dollar business by the end of the decade, with his
company playing a lead role.

Though it is also developing solid-state lidar, and
claiming long-range capability, where the Canadian firm
seems to diverge from rivals AEye and Luminar is its
focus on lower-cost hardware. At the CES event in 2017,
the company even raised the possibility of future lidar
sensors for automotive applications costing just $100.

In a white paper penned by Pierre Olivier, its VP of
engineering and manufacturing, LeddarTech says the key
is optical time-of-flight signal processing, with claims
that the company’s algorithms are able to calculate ac-
curate ranging information from only a very weak photon
“echo”.

“When combined with a photodetec-
tor, a pulsed light source and optics, it
forms a complete sensor system that can
easily be integrated into a small footprint
at low cost,” wrote Olivier of the firm’s
“LeddarCore” product, adding that LEDs,
VCSELs, and edge-emitting diodes were
all compatible with the design.

With two CES 2018 innovation awards for
LeddarCore in the bag, LeddarTech headed
to Vegas this year with engineer-
ing samples and demonstrations of lidar
systems showcasing “LCA3”, the latest
version of LeddarCore. “More key suppli-
ers and Tier-1 manufacturers are turning
to us over other lidar vendors because we
deliver on our promises,” boasted Bou-
langer ahead of the event.

Joining forces with the firm at a dedicated exhibition
pavilion in Vegas were the other members of what Led-
达尔Tech describes as its “Leddar Ecosystem”. As well as
Osram, they included optical component supplier Ham-
amatsu Photonics and Albuquerque-based VCSEL spe-
cialist Trilamina — the latter showing off a solid-state
3D lidar system built around its flip-chipped 940 nm
emitters and patented monolithic microlenses.

Innoviz and Oryx

Israel has turned out to be something of a hot-house
for lidar startups, thanks in part to past investments in
sensor technology development by the country’s military.
Among the most successful thus far is Innoviz Technol-
ogies, which in the past 12 months has landed series B
venture backing of $73 million alongside partnerships
with car-parts giants Activ and Magna, contract manu-
facturer Jabil, and an unspecified “top-tier” auto maker.

In September, the Kfar Saba firm said that it had
grown to employ some 75 workers, and that its first lidar
continued on page 11
Industrial Ultrafast Lasers

New Onefive laser range
- Microjoule pulse energies
- Pico- and femtosecond pulses
- Robust and reliable 24/7 operation

Meet us at booth #1336

sales@nktphotonics.com
www.nktphotonics.com
Lidar continued from page 09

product was in production and would become available in the first quarter of 2018. CEO and co-founder Omar Keilaf is able to draw on the expertise of “chief photonics officer” David Elooz — previously head of physics within the elite technology unit of the Israeli Defense Forces — and welcomed Samsung Catalyst and Softbank Ventures Korea as strategic investors in the latest round of financing.

“With our lidar solutions moving into mass production and getting ready to begin shipping in early 2018, the backing from companies such as Samsung, SoftBank Ventures Korea and all the rest will enable us to scale our operations as we focus on not only lidar but the entire autonomous vehicle stack,” said the CEO in October.

Innoviz was another to demonstrate its latest advances at CES 2018, and although it is yet to reveal too much technological detail about its MEMS-based lidar sensors in public, the company has indicated that it is targeting the lower-cost end of the emerging market. Initial versions of its “InnovizOne” sensor are expected to sell for a few hundred dollars at first, with a price below $100 even envisaged as the partnership with Jabil’s optics division begins to scale up.

Another Israeli startup in the sector is Oryx Vision, which in August 2017 raised $50 million in a series B round of financing. Oryx stands out for its adoption of conventional laser emitters, in its coherent flash lidar. It is said to operate well in challenging conditions posed by adverse weather and bright sunlight at dawn and dusk.

Also with strong connections to Israel’s military technology base, Oryx said it would put the funding towards accelerating its development work and intensifying commercial engagements with car OEMs and top-tier-auto part suppliers. The company expects to ship units for car-mount ed testing during the second half of 2018.

Both Innoviz and Oryx can take inspiration from compatriot Mobileye. Though not a lidar company, its camera-based systems for advanced driver assistance features are also expected to find widespread use in autonomous vehicles, prompting San Jose, while Quanergy began mass production of its ‘S3’ sensors at its highly automated factory in Sunnyvale, California.

“With the commissioning of this facility, Quanergy is now the only company to mass produce solid-state 3D lidar sensors,” boasted the firm in December 2017, adding that the production line features high-precision photonic IC processing tools and a conveyor system connecting machinery that turns a silicon wafer cassette into a finished lidar sensor.

“We fully expect that these sensors will play an integral role in bringing self-driving vehicles to the road,” said Quanergy’s CEO Louay Eldada, also predicting that the price of the S3 will eventually drop below $100. Meanwhile the company’s former head of engineering, Angus Pacala, has started up his own venture in the form of San Francisco-based Ouster. With a $27 million series A round backed in December, Ouster is aiming to ramp production of its 64-channel sensor this year, as headcount grows from 40 to an expected 100 by summer.

Not to be outdone, Velodyne has slashed the price of its “VLP-16” sensor in half, and used its CES 2018 event booth to host what is described as the first fully autonomous taxi to hit the market. Navya’s “Autonom Cab” can carry up to six passengers and features no fewer than ten lidar sensors, alongside four cameras and four radar units.

Velodyne president Mike Jellen said in advance of the event: “We expect 2018 to be a watershed year for both Velodyne and the industry, laying the foundation for autonomous vehicle deployments around the world in just a few years.”

TetraVue

At last year’s Photonics West TetraVue — another Californian startup in the automotive lidar space — revealed that it had raised $10 million in venture backing, and the firm was actively hiring on its dedicated Careers Center booth during the event. Since then, it has emerged that the financial backers include the likes of semiconductor equipment giants KLA-Tencor and Lam Research, alongside the venture wing of industrial sensor firm Robert Bosch and the Samsung Catalyst Fund.

“TetraVue cameras uniquely merge digital video with lidar technology by capturing multi-megapixel images at up to 30 frames per second with accurate depth for each individual pixel,” explained the company ahead of the technology making its debut appearance at CES 2018. “As a result, a TetraVue camera has the ability to process 100 times more real-time data describing object location and motion in the surrounding environment.”

MIKE HATCHER

Next-generation medical solutions thanks to outstanding technologies.

SHARING EXCELLENCE

Improving the quality of life requires new advancements in reliable diagnostics and therapies. Jenoptik is your strategic partner meeting your future challenges in healthcare and life science. Benefit from our expertise and broad technology base enabling solutions for imaging, diagnostics, laser therapy and esthetics.

www.jenoptik.com

Visit us in South Hall, Booth #1023
DUTCH BRIGHTEST SEES ALL COLOURS!

RHEA SPECTROMETER SERIES

- High-end cooled 2D CCD sensor
- Dark current compensated, virtually zero over entire integration range
- All calculations done inside
- ND filter wheel for large dynamic range (incl. shutter)
- USB, RS232, Ethernet, ext. in/out trigger interfaces

SPECTORADIOMETER | IMAGING SPECTRO-COLORIMETER | COLORIMETER | LIGHT METER | DISPLAY MEASUREMENTS
LIGHTING MEASUREMENTS | ANALYSIS SOLUTIONS

info@admesy.com
www.admesy.com

Precision Automation Sub-Systems

PI provides precision motion and automation sub-systems based on
- Air Bearings and/or Mechanical Bearings
- Standard and Custom Gantry
- EtherCat®-based State-of-the-Art Motion Controllers
- Cartesian Robots and Parallel Kinematics Hexapods
- Linear Motors, Voice Coil and/or Piezo Motor Drives

Booth 4745

PI designs and manufactures precision motion systems at locations in the USA, Europe, and Asia. With over 40 years of experience developing standard and custom products based on piezoceramic and electromagnetic drives and more than 1,000 employees in 13 countries, PI can quickly provide a solution for your positioning and automation projects in industry and research.

PRECISION | SPEED | STABILITY - MOTION CONTROL & POSITIONING SOLUTIONS
Optics and photonics jobs: what it needs, what it takes

The SPIE Photonics West Exhibition offers optics and photonics companies the opportunity to meet qualified engineers and technical talent. The Job Fair, held in conjunction with the exhibition, gives students and other job seekers a chance to discuss their skills and talents with leading companies.

SPIE spoke with companies looking to recruit at the Moscone this week, as well as students and professors, about finding and filling jobs in photonics. Companies told us what they are looking for in candidates, while students shared the experiences of their job hunts.

According to Alexis Vogt, Endowed Chair and associate professor of optics at Monroe Community College (MCC), the global optics, photonics, and imaging industry is growing faster than the overall economy. Coupled with industry reports suggesting that one-fifth of experienced technicians and engineers are approaching retirement, the need for skilled optics and photonics technicians is clear.

Vogt adds that in upstate New York, three-quarters of skilled optics technician job openings go unfilled annually, due to insufficient numbers of optics and photonics graduates. That shortage is not isolated to New York — or even the US. In a survey of 1700 small- and mid-sized German companies, about three quarters said the shortage of skilled workers impairs their innovation activities. Some German optics companies have contacted MCC to hire skilled optics technicians. "Our entire industry needs highly skilled optics and photonics technicians," said Vogt.

Universities and training programs are working hard to match skilled applicants with jobs, but there are issues to be worked out.

Nicholas Wong is a recent PhD graduate from the Optoelectronics Research Centre at the University of Southampton in the UK, and is actively looking for work. He says that in his experience, a PhD trains one technically, but offers limited preparation for tackling the job market.

"I have had to do a large degree of finding my own way and learning as I go when it comes to knowing the current state of where these relevant jobs are available, and how to approach the search for them," said Wong.

Mike McKee is associate director of Academic Support Services in the Center for Research and Education in Optics and Lasers (CREOL) at the University of Central Florida, and recognizes the difficulty seen by Wong.

"While the job market is strong for photonics engineers, the problem has been trying to navigate to find those positions," he says. "Often the positions are not called out as "optics or photonics engineering" positions, making it difficult for students to search using those key terms."

One surprising resource McKee has pointed prospective students towards is the US Department of Labor website, which carries a large number of jobs forecast to be available in the optics and photonics industry over the next eight years.

He adds that several companies approached CREOL last year at Photonics West, asking them to refer engineering students to their organizations. To help get the word out, McKee and others created the "CREOL Undergraduate Blog," (http://creolundergrad.blogspot.com/) which posts job opportunities.

"Start-up scrappy"

The consensus among exhibitors and recruiters is that candidates need life skills as well as technical skills. Job requirements are likely to include interpersonal skills relating to teamwork, organization, and flexibility. Employees who excel are those who are technically sound, can change gears quickly, adapt to a variety of situations, and understand how to work in a collaborative environment.

continued on page 15
Forge new paths
Electro MIR Laser

SUPERCONTINUUM LASER
White Light Laser UV Visible NIR Mid-IR

Mid-IR Supercontinuum
High power
Broadband up to 4.8 µm
Maintenance free
Long lifetime
Modular industrial design

Meet us booth #4058
with Photonix Edge LLC booth #5436
www.leukos-systems.com

AMPLIFY EVERY PHOTON

Photonis provides superior low light imaging cameras and superior photon detectors to provide endless solutions for capturing low light phenomena. Our award-winning cameras are ideal for day/night surveillance, while our photon detectors offer a wide range of custom options to be sure you experience clear imaging even in the darkest conditions.

Visit us at Photonics West, booth 5247 to talk to an application specialist or visit our web site at www.photonis.com for more information.

www.photonis.com
Optics and photonics jobs

Nick Herringer, US Engineering Services Manager at Zemax, says his company looks for smart people who have a strong technical background in optics, physics, or a related field. But those people also need the social skills for building meaningful relationships in a collaborative work environment.

“Typically, a degree in an optics or physics discipline will provide candidates with the appropriate technical skillset, but that is only part of the equation,” said Herringer. “We also need candidates to be able to communicate effectively with co-workers, be flexible with their work, and have the creativity to develop new solutions.”

In some cases, companies are simply looking for more experience than some recent graduates can offer. The human resources group at Quarton Engineering, who are looking for “optical and opto- mechanical engineers at all experience levels,” notes that while many candidates have worked on very small projects, they are frequently looking for people with experience designing at a much larger scale.

Candidates often have a great deal of research experience, which is valuable, but Quarton would like candidates to have more real-world, application-related experience. “It is sometimes challenging to find candidates with the work experience in optical system development that meets our broad needs,” they told us.

While this may sound negative, the group encourages optics and photonics students to apply, saying: “We have found that as technology progresses, optical systems are becoming more and more ubiquitous, with countless opportunities to be on the cutting edge of technological progress.”

The lidar equipment company Luminar Technologies also looks for candidates with some experience. A job description for a Vehicle Integration Engineer not only asks for two to three years’ experience, but also that the candidate be “start-up scrappy” — having the experience and drive to work with a developing technology.

“We have seen some great talent, finding top professionals in the optical community is always competitive and requires active networking,” says Jason Eichenholz, co-founder and CTO. “Our ideal candidates have a combination of real-world and academic experience in optics and photonics.”

Help yourselves

Nick Herringer encourages students to ensure their degree(s) do not trap them into a niche track. He believes students should broaden their horizons through activities such as computer science courses, foreign languages, or tutoring other students. Taking on subjects outside one’s field of study requires learning to think in different ways, something helpful in the working world.

“Don’t corner yourself into one way of thinking or approaching challenges,” advises Herringer. “Your major or specialization will speak for itself. It is the and commercialize AR and VR technologies. “That will require skills and science that doesn’t exist today,” says Silverstein. “Candidates need to be able to thrive in this uncertainty. Optics and photonics skills are fundamental to this goal.”

Katelynn Bauer is a recent graduate of University of Rochester, and currently a research associate in the Laboratory for Laser Energetics at the same institution. Bauer did not apply to any job without first talking to someone who worked at that company to gauge if that person enjoyed working there. She wanted to spend late. “Intervention should occur earlier,” says Cathy Chen, a senior associate at Exponent, Inc. She notes several studies that show girls are discouraged from entering STEM fields long before they reach college.

When Chen was working on her PhD in electrical engineering at Columbia University, she worked with a bi-annual outreach program offering elementary and middle-school girls the opportunity to participate in science activities on campus. Chen says there was a “definite difference” in the two age groups, in terms of how much they were willing to be openly interested in science. By middle school, the disconnect from STEM subjects was already apparent.

When boys and girls are really young, says Alexis Vogt, they can have an equal interest in science. “At age five, there’s no notion a girl can’t do what a boy can do,” she says. But somehow, even by elementary school, girls are getting the message that they either can’t or shouldn’t be involved in STEM.

As a female in a male-dominated field, Vogt often found herself as the only woman in a class, meeting, or presentation. She credits her parents as teaching her to view that situation as an opportunity, rather than challenge. Not all girls or kids from under-represented communities get such encouragement.

Last year, MCC received $550,000 through a National Science Foundation award called Optics & Photonics Technology Innovation!, or “OPT IN!” for short. Over the next three years, the program will provide education and training for area high school and college students, increase internship opportunities, and expand outreach efforts. As part of this program, Vogt is putting together an Optics Road Show to present science to the general public and targeted audiences including low-income and under-represented racial and ethnic populations, veterans, and women.

“As we move forward and grow our optics program to meet the increasing regional and national optics workforce demands, I want more families to encourage their children to pursue interests in science and physics, especially their daughters,” says Vogt.

And she adds that while most of the attendees at Photonics West this year will be white males — because they are the ones who mainly represent the optics and photonics community today — “it doesn’t have to stay that way.”
Welcome to the optics.org Product Focus which we have published specifically for Photonics West 2018 in partnership with SPIE and the Photonics West Show Daily. Here you will find an effective at-a-glance guide to some of the latest products available on the market with booth numbers if available making it easy for you to check out the products for yourself.

Navitar

Resolv4K Lens System
Navitar’s Resolv4K lens system is designed to maximize the usage of modern sensors with higher pixel densities. The Resolv4K zoom offers tremendously more resolving power over a traditional zoom imaging system – achieving a 400-600% larger field of view without any loss of detail. The new Resolv4K fixed system is ideal for fixed field of view applications with closer working distances and resolving power than standard enlarging or SLR lenses in macro mode.

Visit us at Booth #125

Nanoscribe GmbH

Photonic Professional GT
3D Printer for Nano- and Microfabrication
Nanoscribe’s Photonic Professional GT is the world’s most precise 3D printer based on two-photon-polymerization.
It combines additive manufacturing and maskless lithography in one device.
The resolution is approximately 100 times higher than that of steered lithography, submicrometer details down to a feature size of 200 nm are possible, and printed parts with optical quality surfaces can be printed. This award-winning system sets new standards in a multitude of applications like photonics, micro-optics, plasmonics, micro-fluidics, MEMS, biomimetics and microbioptics.

Visit us at Booth #4368

Ibsen Photonics

Ibsen Photonics launches new ultra-compact FREEDOM C spectrometer with improved resolution
The FREEDOM C spectrometers offer a very high resolution, down to 0.15 nm in a small footprint of only 61 x 65 mm for the UV, VIS and VIS-NIR range. It is equipped with the latest CMOS detector technology with 4096 pixels and a cylindrical lens to increase throughput.
The FREEDOM C can be supplied with Ibsen’s own DISB electronics, which offer fast and accurate timing control for applications like LBS and Raman.

Visit us at Booth #5232

ALPHANOV

ALPHANOV introduces a Pocket-size Ultrashort Laser Seeder: PULS
The new laser oscillator developed by ALPHANOV illustrates its expertise in modeling, designing and prototyping innovative fiber laser sources.
The PULS (Pocket-size Ultrashort Laser Source) is an oscillator offering a unique and monolithic solution for seeding ultrafast laser amplifiers and for applications in multiphoton imaging, laser micromachining and bio photonics. It delivers linearly polarized laser pulses with a nearly Fourier-transform limited pulse duration and a tunable repetition rate in the 20-60 MHz range.

Visit us at Booth #437

Spectrum Scientific Inc.

Holographic Diffraction Gratings
Spectrum Scientific, Inc. (SSI) manufactures a range of standard blazed and sinusoidal diffraction gratings as well as supplying OEM customers with high volume, custom gratings. SSI can replicate a wide variety of holographic diffraction gratings, including plane, convex, concave, toroidal and aspheric gratings. Our gratings are available with blazed or sinusoidal profiles and our proprietary blazing technique offers lower stray light and higher efficiency compared to ion-etched gratings. We are one of the few companies with the capability to manufacture blazed holographic concave gratings.

Visit us at Booth #1352

Follow us on twitter @opticsorg

SPIE. optics.org Contact Rob Fisher, Advertising Sales tel: +44 (0) 117 905 5330 fax: +44 (0) 117 905 5331 email: rob.fisher@optics.org

Photonics West is the premier photonics and laser event. With more than 1,250 companies, this exhibition continues to be the flagship event to find the latest products, tools, and applications for your research or business needs.

The Moscone Center, Moscone North and South San Francisco, California, United States
30 January - 1 February 2018

Product Focus

The business of photonics
Wavelength Meters – Fast and Accurate for CW and Pulsed Lasers

Bristol Instruments’ wavelength meters are used by scientists and engineers who need to know the exact wavelength of their lasers. Systems are available for CW and pulsed lasers that operate at wavelengths from 375 nm to 12 µm. These systems use proven interferometer-based technology to measure absolute wavelength to an accuracy as high as ± 0.0001 nm and offer the fastest sustained measurement rate of 1 kHz. Continuous calibration with a built-in wavelength standard guarantees the reliable accuracy required for the most meaningful experimental results.

Contact Details
Bristol Instruments, Inc.
50 Victor Heights Parkway
Victor, NY 14564
www.bristol-inst.com
Tel: +1 585 924-2620

Superior performance when it counts

From custom design to volume manufacturing
For advanced laser systems, communications, imaging, sensing, and test and measurement.
goochandhousego.com
Visit us at booth 1215
First Light Imaging

C-RED 2: High Performance InGaAs camera

Designed for Bio-imaging of industrial applications, the latest compact InGaAs camera from First Light Imaging is revolutionizing SWIR imaging:

- More than 400 FPS full frame
- from 10 to 30 electrons RON
- 15 µm pixels detector for high resolution
- Electronic shutter <1 µs
- 0.8 to 1.7 µm
- 14 bits for an extreme precision

Air or liquid cooled (no LN), C-RED 2 can operate in any environment, offering at the same time the fastest acquisition rate and the lowest read out noise of all InGaAs SWIR cameras.

More information: www.first-light.fr/c-RED-2/

Contact Details
First Light Imaging
Europarc, Sainte Victoire, Bat 6
Route de Valbrillante, Le Canet
13100 Meyssay, FRANCE
www.first-light.fr
contact@first-light.fr
Tel: +33 (0) 4 42 61 29 20

Bristol Instruments, Inc.

Spectrum Analyzer - High Resolution and High Accuracy

The Laser Spectrum Analyzer from Bristol Instruments operates as both a high-resolution spectrum analyzer and a high-accuracy wavelength meter.

These systems are for scientists and engineers who need to know the spectral properties of their lasers that operate from 375 nm to 12 µm.

With spectral resolution up to 2 GHz, wavelength accuracy as high as ±0.0001 nm, and an optical rejection ratio of more than 40 dB, this instrument provides the most complete analysis needed for the most demanding applications.

Visit us at Booth #215

Contact Details
Bristol Instruments, Inc.
50 Victor Heights Parkway
Victor, NY 14564
www.bristol-inst.com
info@bristol-inst.com
Tel: +1 585 924-2620

MicroCircuit Laboratories LLC

Lower Cost of Hermetic Packaging

MCL will lower your costs of hermetic packaging with particle free internal atmosphere with Leak Rates will slower than most stringent Aerospace MIL-STD-883 TM 1014 Leak Rates for time to operation.

- Pre-Clean and Class 1 Cleanroom Processing
- Low Temperature Hermetic Seal
- Automatic Gross and Fine Leak Testing
- Particle Testing
- Onsite Metrology including SEM and X-Ray for both seal joints and feedthroughs.

Design, Develop, Pilot and HVM solutions from the leader in hermetic package sealing.

Visit us at Booth #5463

Contact Details
MicroCircuit Laboratories LLC
Kennett square, PA
United States
www.microcircuitlabs.com
Tel: +1 610-228-0161
Fax: +1 610-228-0162

EKSMA OPTICS

MP1 Pulse Picking System

EKSMA Optics presents the new MP1 pulse picker that consists of built-in fast driver and a Pockels cell. MP1 is able to select pulses at 600kHz rate.

In setup with pMaster 4.0H digital synchronization and delay pulse generator, MP1 can be synchronized for single pulse picking from max 30MHz repetition rate laser pulse train.

MP1 has BBO Pockels cell and is set for quarter-wave voltage operation. On demand BBO cell can be changed to KTP cell for half-wave voltage operation. On demand BBO cell can be changed to KTP cell for half-wave voltage operation.

Visit us at Booth #639

Contact Details
EKSMA OPTICS
Optolita UAB, Mokslininkų str. 11
LT-08412 Vilnius
Lithuania
www.eksmaoptics.com
info@eksmaoptics.com
Tel: +370 5 272 99 00

Don’t just measure time, CONTROL IT!

Timing, delay & pattern generation all with 20 picoseconds precision

Discover the Time Controller on our booth 5142
TOPTICA Photonics AG

Visit us at Booth #4645, North Hall

Powerful Femtosecond Lasers

TOPTICA’s femtosecond ultra is a cost-effective, turnkey laser that provides femtosecond pulses at central wavelengths of 780, 1050 or 1560 nm with up to 5 W output power.

It is a powerful laser source for nonlinear microscopy applications like effective two-photon excitation of fluorescent proteins and SHG based contrast mechanisms, as well as micro-lithography.

The femtosecond laser combines ultra-high reliability with compact design. It is easily controlled via Ethernet or USB and a simple graphics user interface (GUI) enables user-friendly access to all laser parameters.

Iridian Spectral Technologies

Visit us at Booth #114

Global leader in optical filter design and manufacturing

Iridian is a global leader in optical filter design and manufacturing for applications such as tele/datacom, spectroscopy, 3D entertainment, and detection/sensing/imaging (for example industrail, earth-observation, process control).

Current capabilities extend from ~300 nm to 10 µm (UV-LWIR) with filter sizes from <1 mm to >300mm.

Iridian supports all customer needs from prototype to high volume production and focuses on tailoring solutions for specific OEM applications.

Areas of specialization include both multi-band filters (multiple notch/bandpass filters) and multi-spectral filter arrays (assemblies or photo-lithographically patterned filters).

Spectrum Scientific Inc.

Visit us at Booth #1352

Freeform Mirrors

Freeform mirrors are curved optics with no axial symmetry and offer many advantages over conventional optics. Their single-optical surface allows for compound compensation and a reduction in the number of optics in the system, reducing optical volume, easing alignment and improving throughput. They also provide additional aberration correction and allow for redistribution of tolerances.

Using state of the art replication processes, Spectrum Scientific offers a cost-effective method for the volume manufacture of freeform mirrors at prices equivalent to standard high precision mirrors.

Website Link URL: https://sssioptics.com/cart/index.php?dispatch=categorias.view&category_id=290

Navitar

Visit us at Booth #125

Cleared Tissue Objective

Special Optics and ASI have developed an immersion objective lens specifically designed for light sheet microscopy of cleared tissue samples, including ASI’s dual-view Selective Plane Illumination Microscopy (dSPIM).

The lens appeals to researchers building customized microscope setups (e.g. OpenPIM type) as it is available for separate purchase, unlike other objectives suitable for cleared tissue.

The 0.4 N.A. multi-immersion objective is designed for dipping media RI ranging from 1.33 to 1.56, has NA ~0.4, >1 mm field of view, ~17X magnification, and 12 mm working distance.

Visit us at booth 1215
10kV and 15kV High Voltage Optodiodes

OZ100 and OZ150 families feature high voltage isolation in a small package.

Reverse current, in µA, is generated when the diode junctions are exposed to light. The response is linear, meaning the current level can be used to control and monitor isolated systems.

The optically clear over-encapsulation preserves light sensitivity, protects the device, and provides mechanical stability.

Applications include noisy industrial environments and sensitive instrumentation where high isolation is needed, or in controlled feedback systems like high voltage opto-couplers or voltage regulators.

Contact Details

Voltage Multipliers, Inc.

8711 W. Roosevelt Ave.,

Visalia, CA, USA 93291

www.voltagemultipliers.com

info@voltagemultipliers.com

Tel: +1 435 752 4301

Wasatch Photonics

Visit us at Booth #3003

Transmission gratings with superior efficiency and uniformity

Wasatch Photonics transmissive VPH gratings deliver high efficiency, low polarization sensitivity, and uniform performance over broad bandwidths and large clear apertures - all in a robust, field-tested package.

We draw on our multiple patented design technologies to optimize each grating to its application, from stock gratings for R&D to custom gratings for our valued OEMs.

As an experienced volume gratings supplier, we offer quality, performance, and consistency you can count on.

Contact our experts to discuss your needs in pulse compression, OCT, imaging, and astronomy.

Contact Details

Wasatch Photonics

1805 North 1000 West, Suite 120

Logan, UT 84321 USA

www.wasatchphotonics.com

info@wasatchphotonics.com

Tel: +1 435 752 4301

Voltage Multipliers Inc.

Visit us at Booth #4515

10kV and 15kV High Voltage Optodiodes

OZ100 and OZ150 families feature high voltage isolation in a small package.

Reverse current, in µA, is generated when the diode junctions are exposed to light. The response is linear, meaning the current level can be used to control and monitor isolated systems.

The optically clear over-encapsulation preserves light sensitivity, protects the device, and provides mechanical stability.

Applications include noisy industrial environments and sensitive instrumentation where high isolation is needed, or in controlled feedback systems like high voltage opto-couplers or voltage regulators.

Contact Details

Voltage Multipliers, Inc.

8711 W. Roosevelt Ave.,

Visalia, CA, USA 93291

www.voltagemultipliers.com

info@voltagemultipliers.com

Tel: +1 435 752 4301
Optical lattice clocks: time for miniaturization

Photonics West plenary speaker Hidetoshi Katori is at the forefront of a move to develop the latest generation of optical lattice clocks. But how do these ultra-precise timepieces work, and where might they be used?

In recent years, organizations including the US National Institute of Standards and Technology (NIST), the University of Tokyo, and the UK’s National Physical Laboratory (NPL) have devoted increasing attention to the development of optical lattice clocks— in essence new and even more precise versions of atomic clocks.

These cutting-edge timepieces have a wide range of potential applications, from improved tracking of deep-space probes and better satellite navigation systems to more accurate tests of fundamental physics. Even more fundamentally, they could facilitate a change in the definition of the SI unit of time.

In simple terms, an atomic clock works by tracking the oscillations of an electron bound to an atom—using those oscillations as the basis for time metrology. In optical clocks, those oscillations are very fast, and correspond to frequencies in the optical domain of the electromagnetic spectrum. These ultrastable oscillations divide time into very fine intervals, helping to improve the precision of the clock.

As Hidetoshi Katori, chief scientist in the Quantum Metrology Laboratory at the University of Tokyo, explains, an optical lattice clock interrogates thousands of atoms trapped at the anti-nodes of a standing optical wave. Compared with a more conventional ion clock, which typically interrogates a much smaller number of ions, an optical lattice provides much better stability.

Andrew Ludlow is a physicist at NIST in Boulder, Colorado. He says that optical lattice clocks are made particularly special because the atoms at the heart of being actively developed in research labs around the world as a next-generation, high-performance atomic clock, are the subject of Katori’s LASE plenary talk—entitled “Optical Lattice Clocks: Reading the 18th Decimal Place of Frequency.”

Optical lattice clocks were conceived about 15 years ago, and much of the development work since then has focused on developing and refining the techniques required to make one work, as well as in experimentally assessing the limits of their performance, both in practice and fundamentally. According to Ludlow, as knowledge about and experience with these systems has improved, so has the ability to leverage their properties for “ever-increasing” timekeeping performance.

One such project is ongoing at NPL in London, where staff are busy designing and implementing an optical lattice clock based on strontium atoms. According to the team, strontium is a particularly promising element for such applications because it contains a relatively high abundance of both odd and even isotopes (including 87Sr at 7% and 88Sr at 82%). Another advantage is that strontium atoms can be cooled in ways that are ideally suited for loading into an optical lattice—largely because they possess a broad (fast cycling) transition that is very useful for Doppler cooling of odd isotopes, as well as a narrow (slow cycling, but not too slow) transition that enables sub-Doppler cooling in the even isotopes.

Despite that exciting prospect, he still sounds a note of caution and points out a critical limitation of such systems. They remain, in his words, essentially laboratory experiments, do not operate all of the time, and need regular, careful adjustment by scientists.

“As a research community, we are working to mature the experimental apparatus not just towards higher performance, but also towards more robust operation outside the laboratory setting,” Ludlow added. “While some of the key applications of these optical clocks can be realized in the lab, many applications require operation outside the laboratory, so we want to move this quantum technology to the places it is most needed.”

Tick rates and relativity

Meanwhile, Katori and his team at the University of Tokyo’s Quantum Metrology Laboratory have developed an optical lattice clock at an uncertainty level of \(10^{-16}\). At this level, he explains, they are able to distinguish between the tick rate of one clock placed just a centimeter above or below a second clock—because relativistic effects dictate that the higher of the two clocks will “tick” very slightly faster.

“Using this gravitational red-shift, we have measured the height difference of two remote clocks with an uncertainty of five centimeters,” said Katori. “We are now miniaturizing these clocks to take them outside the laboratory.”

According to Katori, designing an atom container in such a way that it did not perturb the atomic pendulum continued on page 23
LightHUB+ Laser Light Engine

- Up to 6 user-upgradable wavelengths
- Choice of more than 30 different wavelengths in various power levels up to 300mW
- Single-Mode PM fiber output
- 6 individual analog and digital modulation inputs
- Passive or active cooling with directly attachable cooling unit
- RS-232 and USB 2.0 interface

Visit us at markettech booth #2041

Omicron-Laserage Laserprodukte GmbH
www.omicron-laser.de
Optical lattice continued from page 21

was a key challenge. However, the problem was solved by tuning the trapping laser frequency to the so called "magic frequency" — where the dipole polarizability of trapped atoms becomes equal for the clock states.

Katori reveals that his Photonics West plenary talk will focus on describing exactly how he and his team have worked on controlling systematic uncertainty at 10^{-18} — and provide an update on recent progress made with the development of transportable clocks. "These are important steps for optical lattice clocks to be practical and useful devices," he says.

Looking ahead, Ludlow observes that there are a handful of innovations and developments on the horizon. First, he highlights the fact that although a lot of recent work has focused on radically improving the performance of optical lattice clocks, it can still be quite a challenge to assess how good they really are.

This is largely because observers need a very good reference to compare it against — and of course optical lattice clocks are now better than all other time or frequency references. To address this he reveals that some efforts now focus on achieving what is possible within a laboratory or research institute — but also points to the fact that some measurements or assessments "greatly benefit" from remote comparison between distinct types of optical clocks.

"Because of the high level of performance of these clocks, remote comparisons are challenging and sometimes even impossible," Ludlow said. "But there is presently a good deal of effort around the world aimed at making optical lattice clocks comparisons in order to rigorously evaluate all aspects of their performance."

On a related note, Ludlow also predicts that a good deal of work over the next few years will be focused on how best to get this quantum technology, and the associated complex research apparatus, outside of the lab. Such applications could include relativistic geodesy — using clocks to measure gravitational potential — as well as advanced communications or navigation systems.

"Some early efforts have started exploring additional quantum phenomena that could improve the performance of lattice clocks even more. A good example is the implementation of quantum correlations to enhance clock measurement signal-to-noise, often referred to as ‘spin squeezing’," he adds.

A number of groups have also started exploring next-generation, ultra-stable laser sources. These are used to drive the electronic oscillations in the clock, and take advantage of cryogenic optical cavities and new mirror technologies.

"With all of the advances that have already happened, plus more to come, there is an expectation that at some point in the future, optical clocks will become the new basis for the definition of the SI second," Ludlow suggests. "Clocks like these are being aggressively developed by talented research groups around the world, and while it may be impossible to predict what innovations to come will have the most value, I’m confident that these systems will only get better and more useful."

Meanwhile, Katori reiterates that the ongoing realization of miniaturized clocks — with stable operation extending to a month, or even perhaps an entire year — will be among the critical innovations over next few years.

"These efforts will make optical lattice clocks practical instruments that open up new physics and new innovations armed with its unprecedented measurement capability," he predicted.

See Hidetoshi Katori’s LASE plenary at 11.15am in Room 21.

ANDREW WILLIAMS
DUTCH BRIGHTEST SEES ALL COLOURS!

TEST AND MEASUREMENT SOLUTIONS FOR COLOUR AND LIGHT MEASUREMENTS IN DEVELOPMENT AND PRODUCTION PROCESSES

RHEA SPECTROMETER SERIES
- High-end cooled 2D CCD sensor
- Dark current compensated, virtually zero over entire integration range
- All calculations done inside
- ND filter wheel for large dynamic range (incl. shutter)
- USB, RS232, Ethernet, ext. in/out trigger interfaces

SPECTRORADIOMETER | IMAGING SPECTROCOLORIMETER | COLORIMETER | LIGHT METER
DISPLAY MEASUREMENTS | LIGHTING MEASUREMENTS | ANALYSIS SOLUTIONS

info@admesy.com
www.admesy.com

5 REASONS ALLUXA SHOULD BE YOUR OPTICAL COATING PARTNER

1. HIGHEST PERFORMANCE THIN FILM COATING PROCESS
2. ULTRA SERIES BANDPASS, DICHROICS, AND MULTIBANDS
3. HIGH PERFORMANCE FLAT-TOP ULTRA NARROWBAND FILTERS
4. FASTEST CUSTOM COATING TURNOVER
5. NARROWBAND AND LIFE SCIENCES FILTER CATALOG

REASONS ALLUXA SHOULD BE YOUR OPTICAL COATING PARTNER

1. HIGHEST PERFORMANCE THIN FILM COATING PROCESS
2. ULTRA SERIES BANDPASS, DICHROICS, AND MULTIBANDS
3. HIGH PERFORMANCE FLAT-TOP ULTRA NARROWBAND FILTERS
4. FASTEST CUSTOM COATING TURNOVER
5. NARROWBAND AND LIFE SCIENCES FILTER CATALOG

SPIE. PHOTONICS WEST
JANUARY 30 - FEBRUARY 1, 2018
BOOTH #4569 NORTH HALL

www.alluxa.com

MULTI-AXIS SYSTEMS. CUSTOMER SPECIFIC SOLUTIONS.

- Highest precision and best dynamics
- Synchronized movement
- Various designs according to your needs
- Scalable strokes
- Optimization for different loads and dynamics
- Air bearings or clean room options available
- Expandable with adapted controllers or software to achieve the best results

SPIE. PHOTONICS WEST
JANUARY 30 - FEBRUARY 1, 2018
BOOTH #4569 NORTH HALL

www.alluxa.com

MULTI-AXIS SYSTEMS. CUSTOMER SPECIFIC SOLUTIONS.

- Highest precision and best dynamics
- Synchronized movement
- Various designs according to your needs
- Scalable strokes
- Optimization for different loads and dynamics
- Air bearings or clean room options available
- Expandable with adapted controllers or software to achieve the best results

SPIE. PHOTONICS WEST
JANUARY 30 - FEBRUARY 1, 2018
BOOTH #4569 NORTH HALL

www.alluxa.com
Collaboration key as LIGO is prepped for future breakthroughs

Developing the optics behind LIGO’s gravitational wave detectors saw photonics engineers and vendors collaborating on ground-breaking technology. Now those systems are being upgraded further.

The Laser Interferometer Gravitational-Wave Observatory (LIGO) has to date made five confirmed observations of gravitational waves from its two sites in Washington and Louisiana, a spectacular success for the teams of engineers behind LIGO’s optics. But developing those systems and making observations possible was a demanding operation for the researchers and industrial partners involved.

At the heart of gravitational wave detection inside the Advanced LIGO sites is a system of test masses — the 40 kg mirrors, each 34 cm across and 20 cm thick, against which the laser beam is reflected during the instrument’s operation. These mirrors, along with an arrangement of compensation plates, recycling mirrors and beam splitter components, are collectively termed the “Core Optics” subsystem, and form the cavity optics where observation of a gravitational wave occurs.

Garri Lynn Billingsley, LIGO senior engineer and manager of the Core Optics subsystem, confirms that development of “Our research has developed what I think we can fairly call the most stable lasers in the world.”

BENNO WILLKE, ALBERT EINSTEIN INSTITUTE.

an optics system able to meet the requirements of LIGO was a far from trivial matter, demanding the combined efforts of engineers from the LIGO project and several industrial partners from the optics sector.

“We were aware of how challenging the specifications were, but at the same time we knew that every gain we made in these optics would have a direct impact on the final noise floor of the instrument in use,” commented Billingsley. “The effort needed to make the Core Optics as good as possible would ultimately be worth it when advanced LIGO was operational, so we worked ‘hand in glove’ with the vendors involved.”

The design challenges were ultimately met through the use of test masses made from ultra-high purity fused silica and coated with layers of doped tantala (tantalum oxide), with a micro-roughness of less than 0.16 nm RMS in order to meet stringent restrictions on acceptable light scatter.

Billingsley explained that the fused silica used was a Heraeus Suprasil material, with the test masses all super-polished at Coastline Optics in California, and then ion beam figured at what is now Zygo Extreme Precision Optics at Richmond, formerly the ASML Optics facility.

Other partners involved in the project included Laboratoire des Matériaux Avancés (LMA) at the University of Lyon in France, where the core optics were coated, while a now-dissolved group at CSIRO in Sydney, Australia, carried out coating operations on LIGO’s Michelson interferometry optics and certain other components — efforts that Billingsley characterized as “spectacular” work.

The target was a final Core Optics design capable of delivering acceptably low losses for the optical signal when taken across the complete sub-system, requiring a delicate balancing act from the engineering team.

Acceptable losses

“Our budget for allowed loss was 75 ppm — that’s 75 ppm total loss in a cavity four kilometers long, a very stringent requirement when allocated among the different sources of loss that we knew we were likely to be dealing with,” observes Billingsley. “A standard approach would be to divide up the allowable defect losses per measurement instrument type and allow a certain number of ppm in each defect size range, but in reality it turned out that the optical defects were mostly point defects, with very few scratches. This allowed us to re-allocate the loss budget based on what we were actually finding.”

In the end the team achieved losses of around 60 ppm, better than they were aiming for, with the quality of the final ion-beam polish playing a significant part in the achievement.

“We posed a significant challenge when we set our RMS limit for the polishing operation, knowing that it was a very tough specification,” Billingsley recalled. “In the end, many pieces were delivered at 0.1 nm RMS over an area of 160 mm diameter, which is excellent work.”

The coatings on the test masses were a further challenge, and LMA’s engineers were tasked with producing a coating uniformity that was, in Billingsley’s words, “at the far end of anyone’s experience.”

The recipe for the final coating arose from the need to tackle thermal noise, one of the most sensitive and important factors, while also retaining all desired optical properties from the test masses. A titania-doped tantala coating, layered with silica, was ultimately developed for the purpose. Tantala/silica is a known material for mirror coatings, but the exacting demands of LIGO turned out to require the addition of titania, in order to both reduce internal friction within the coating itself, and lower the thermal noise of the final coated component.

Future generations of LIGO could employ radical new approaches to the thermal noise problem, perhaps by using silicon test masses cooled to cryogenic temperatures, while several different concepts designs for the Core Optics sub-system as a whole are under consideration, to tackle the inherent trade-off between cost and sensitivity.

Pre-stabilized laser systems are suitable for use in the hunt for gravitational waves. Design parameters for LIGO’s multi-stage Nd:YAG laser, intended to be capable of supplying power in the 200 W range with exacting limits on the allowed frequency, intensity fluctuations and spatial impurities, meant that the simple purchase of a commercial laser system for use in the observatory was out of the question.

Instead, a development team at the Max Planck Institute for Gravitational Physics (the Albert Einstein Institute, AEI) in collaboration with Laser Zentrum Hannover (LZH) selected a Mephisto laser source from Innolight as its starting point. After Innolight, now part of Coherent, had made some initial pre-2017 Nobel Prize in Physics, the LIGO and Virgo teams revealed that they had detected the first direct gravitational-wave evidence of a neutron-star collision; the cataclysmic cosmic phenomenon that was then confirmed by observations of a resulting gamma-ray burst and spectacular signals across the electromagnetic spectrum. Credit: NSF/LIGO/Sonoma State University/A. Simonnet.

In the meantime, 2018 will see LIGO begin its third observation run, termed “O3”, and in preparation a program of modifications and enhancements to the existing instrument and its optics is currently under way.

“Development of the Core Optics subsystem has taught us a great deal about what’s needed in the search for gravitational waves, and the existing system has produced some great results,” said Billingsley. “But for O3 we are putting in the latest-greatest test masses, combining the same optics design with the most uniform coatings of the bunch. We now have the opportunity to put in our best technology, and that’s what we will be doing.”

Laser stability

The specifications of the LIGO interferometer also posed significant challenges for the team tasked with developing a
Coherence Matters.

Laser technology | Terahertz technology | High frequency systems

South Hall, booth #2119

coboltlasers.com | hubner-photonics.com
modifications to the source's diagnostic channels and driver electronics, the two German centers took the Mephisto laser as a seed source for their high-power laser development process, and set about creating a laser suitable for use in LIGO.

"It would be difficult for a commercial vendor to develop a laser with the specifications we needed, as it is unlikely that there would be any large market for such a source," commented Benno Willke from AEI, the leader of that development project. "We essentially took a commercial 2 W output seed laser with a very stable frequency and narrow linewidth, and then carried out the rest of the work ourselves."

The subsequent development program saw LZH design and build amplifiers able to boost the laser's output power in two stages, first from 2 W to 35 W, and subsequently from 35 W up to the 200 W capacity demanded by the full LIGO specifications. AEI then designed the systems needed to stabilize and characterize the laser output, which in practice included an effort to reduce the laser noise by orders of magnitude compared to what is considered acceptable for a commercial source.

"We were greatly helped by having experience of an existing gravitational wave interferometer, the GEO600, situated south of Hannover," explained Willke. "This 600-meter Anglo-German instrument, construction of which started in 1995, has helped us to understand what is actually required in terms of not just stability and reliability of the laser sources, but also the diagnostics. Adequate monitoring and diagnostics are essential, in order to rule out laser glitches in any meaningful observations of gravitational waves."

Even with this prior experience of gravitational wave observatories, the laser development program was a challenging one, with requirements approaching the limits of what was known to be possible in certain areas. Power stabilization, in particular, is one field where the expertise gained by AEI during its LIGO work has subsequently made it a world leader, according to Willke.

"We found that our LIGO targets could only be reached if we detected roughly 200 mW of light with a photodiode, which is typically not possible," he said. "So our solution was to split the light power onto several photodiodes and then combine the photocurrents. That was the only way to achieve sufficiently low noise levels for our control systems and allow the power stability we needed."

O3 upgrades

For LIGO's upcoming O3 operational run, some changes are being made to the pre-stabilized laser subsystem, building on lessons learned during the interferometer’s previous operations. One significant alteration is a change to the laser power levels used. Although the source continued on page 28
Ligo continued from page 27
developed by LZH and AEI has a design capability of 200 W, significantly lower powers were actually used during the successful operational runs that saw LIGO detect the distant black-hole and neutron star collisions that prompted last year’s physics Nobel.

“Due to thermal loading and certain noise coupling mechanisms, the LIGO interferometers have not been able to operate with the laser at its highest power levels, and instead used around 20 W during O1 and O2,” said Willke. “The plan for O3 is to increase this figure to something like 50 or 60 W.”

That intermediate goal was itself challenging, as the interferometer has proved to be more sensitive to fluctuations in laser beam pointing than the designers had expected. An initial theoretical limit on the beam pointing had been calculated, based on the team’s simulation of how it would influence the output of the detector, but studies of the completed LIGO runs have shown that the beam pointing was in fact limiting the overall sensitivity of the instrument.

For O3, the solution will be a change to the second laser amplification stage. At present a master oscillator-power amplifier (MOPA) handles the first amplification stage from 2 W to 35 W, with an injection-locked high-power oscillator then employed to boost the 35 W output towards the full 200 W capability. For O3 the plan is to replace this second amplifier stage with a modified version of the first amplifier, doubling the 35 W input into a 70 W beam.

LZH’s work on the initial 35 W amplifier has already led to the creation of a spin-out company, neoLASE, to exploit the commercial potential of this amplifier architecture for fields other than gravitational wave astronomy. Now LIGO intends to build further on neoLASE amplifier technology, and use it to generate a 70 W laser beam with the low beam pointing needed.

“Maik Frede, co-founder of neoLASE, was group leader of the solid-state photonics group at LZH, and neoLASE is now providing its Nd:vanadate amplifiers for current LIGO upgrades and to other potential end users,” said Willke. “There are several possible applications in picosecond laser amplification and other areas that could be exploited commercially, using the technology neoLASE now has.”

Virgo, the Italian gravitational wave observatory working alongside LIGO, is also set to benefit. Although its optics are generally similar to those at LIGO there are some differences, including a shorter interferometer arm and some consequent differences in Virgo’s Core Optics sub-system, compared to those in the US facilities managed by GariLynn Billingsley.

The pre-stabilized laser is another point of difference, with Virgo requiring a source delivering 100 W, rather than the 70 W intended for use in LIGO’s O3. But the neoLASE laser amplification technology has been modified to suit this goal, and the company has shipped a unit to Virgo for installation.

This kind of collaboration and shared expertise is likely to be a hallmark of future gravitational wave research, an evolution from earlier patterns of more isolated development work carried out by individual groups, according to Willke.

“The collaboration between the AEI, LZH, and neoLASE is unique, as it provides an environment with all the skills required for the development, fabrication and test of stabilized lasers for gravitational wave observatories,” he said. “Our research has developed what I think we can fairly call the most stable lasers in the world, and other facilities can start to benefit. Now that real gravitational wave astronomy is being carried out, there is an effort under way to bring the different groups currently working in the field together, and coordinate their laser research and development. That is the right approach, to ensure a bright future for lasers in gravitational wave detection.”

TIM HAYES
DUTCH BRIGHTEST SEES ALL COLOURS!

TEST AND MEASUREMENT SOLUTIONS FOR COLOUR AND LIGHT MEASUREMENTS IN DEVELOPMENT AND PRODUCTION PROCESSES

RHEA SPECTROMETER SERIES

- High-end cooled 2D CCD sensor
- Dark current compensated, virtually zero over entire integration range
- All calculations done inside
- ND filter wheel for large dynamic range (incl. shutter)
- USB, RS232, Ethernet, ext. in/out trigger interfaces

info@admesy.com
www.admesy.com

New Product Release

6kW 7x1 Laser Combiner
Combine multiple 1-1.5kW lasers to one fiber at >99% efficiency.

Key Features
- Beam parameter product (BPP) < 4
- Proprietary fiber tapering technique
- Custom configurations available

You will also see other new products
- 500W isolator for Fiber Laser
- Dragon™ QBH-Compatible Connector
- 100W Inline Isolator
- SteadiBeam™ & SeasonBeam™ Isolators
- OCT Fiber Components
- Pump Signal Combiners
- LaserGuard™ Free Space Isolators
- Cladding Power Stripper (CPS)
- Butterfly Packaging Services

Booth 4153 North Hall

www.fiber-resources.com
Top Companies Now Hiring

VISIT THE JOB FAIR IN THE EXHIBITION HALL

LAND THE PERFECT JOB IN OPTICS AND PHOTONICS

FREE ADMISSION
Tuesday & Wednesday
10 am to 5 pm

OSRAM Opto Semiconductors
SCHOTT glass made of ideas
IPG PHOTONICS
QUARTUS ENGINEERING
LOCKHEED MARTIN

intel
Rockley PHOTONICS
LUMINAR
DAYLIGHT SOLUTIONS
Lawrence Livermore National Laboratory

mks
BAE SYSTEMS
oculus from facebook
THORLABS
VOLK

APPLIED MATERIALS
KLA-Tencor
AEROSPACE Assuring Space Mission Success
zygo
hardin optical

COHERENT
nmLaser Products The Source of Laser Shapers
LASERTEL a LEONARDO company
magic leap
TELEDYNE TECHNOLOGIES Everywhere you look

APPLE
AOI
APPLIED OPTOELECTRONICS, INC.

For more information, visit the SPIE Career Center Booth #1206 near Aisle 1800
From the pioneers in sCMOS
the pco.panda 4.2 back illuminated with latest sCMOS technology

65 mm
ultra compact
design

up to 95%
quantum efficiency

6.5 µm pixelsize
for perfect fit in microscopy & life science optics

Photonics West
#1425
pco-tech.com

Visit the Optical Thin Film Hotspot at Photonics West. From Head up Display (HUD) to Diamond Like Carbon (DLC), 3D Imaging and the latest news in optical monitoring technology, visit the technology hotspot at the Evatec booth for a series of mini presentations starting 30th January.

SCHEDULE - DAY 1, 30th JANUARY & DAY 2, 31st JANUARY
11:00 Evatec – Home of the BAK ➔ AR plus DLC in one go
12:00 MSP – The work horse in the optical industry ➔ From HUD to IR cut off
13:00 CLUSTERLINE® RAD – Where Optics meet Semiconductors ➔ Stress free Bandpass Filters on 200mm
14:00 SOLARIS – Where speed is of the essence ➔ Color Filters, Mirrors and Decorative Coatings at the highest speed
15:00 APC – Advanced Process Control in Photonics ➔ Making Evatec's Photonics Solutions possible

EVATEC - Booth 5459 | www.evatecnet.com

The smallest interferometer
for the biggest jobs

Less than 13” long and vibration-immune, the new PhaseCam® 6100 Laser Interferometer measures from towers, in environmental chambers and over long paths— without isolation.

See further. See better. See beyond.

Image courtesy: Bertram

4D Technology. See with 4D.
See all the new 4D products at Photonics West Booth 330.
New Onefive industrial ultrafast lasers from NKT Photonics

Looking for industrial ultrafast lasers that can handle 24/7 operation in a manufacturing environment? The new Onefive range from NKT photonics is for you!

Known for their supercontinuum and single-frequency fiber lasers as well as their unique photonic crystal fiber technology, NKT Photonics has long been a trusted brand in the photonics industry. With their new range of Onefive ultrafast lasers, the company is now moving into the market for industrial and medical ultrafast lasers.

Leading the industry trend of shorter pulses in more rugged form factors, the new ultrafast lasers offer a wide range of pulse lengths from femtosecond to picosecond and output power up to 100 W. The pulses can be controlled accurately with variable repetition rates from single shot to MHz and burst mode.

As many applications and materials are wavelength sensitive even at the ultrafast level, the Onefive lasers are offered both at their fundamental wavelength of 1030 or 1064 nm, and with robust wavelength conversion to green or UV.

Manufactured at their ISO 9000 and 13485 certified facility in Switzerland, the Onefive lasers offer unparalleled reliability, beam quality, and power in a compact form factor ready for 2017 operation. Moreover, NKT Photonics have thousands of lasers installed worldwide and offer local service and support in Asia, Europe, and US to make sure your lines stay up.

See all the new Onefive ultrafast lasers at booth #1336 and talk to our product specialists or visit www.nktphotonics.com for more details on models and specifications.

Objective Lenses from OptoSigma

OptoSigma offers a high quality portfolio of Objective lenses for imaging, laser processing and water immersion applications. Available wavelengths range from Ultra-Violet and Visible to near Infra-Red. Standard products are infinity corrected, designed for use with coaxial illumination and are parfocal at the design wavelengths and visible to allow for monitoring during processing.

With a large variety of working distances from a few millimeters to a half meter, numerical apertures up to 1.0 and magnifications ranging from 2x to 100x, all of our standard objectives are designed to give the rated magnification with a 200mm tube lens. All of our standard objectives may be found on our website, competitively priced and available for quick delivery.

Additionally, we are actively supporting and working closely with OEMs of laser processing systems to create new designs for cutting edge display applications.

Our design and manufacturing process is in-house and our team of engineers welcome your requests for custom applications.

Experience the difference with OptoSigma products.

See them all at Photonics West, Booth #307
Analysts ‘bullish’ on diode sector prospects

The past, present, and future of high-power laser diodes was the theme of the keynote presentation at this year’s Laser & Photonics Marketplace Seminar, organized by Pennwell’s Laser Focus World.

The illuminating talk was presented by Scott Keeney, founder of nLight, who showed how this increasingly essential laser technology, as he put it, has developed and what we can expect in the future.

Starting in 1962 with the laser diode’s invention, Keeney looked at the business side of developments in high-power emitters and the impact they are having as they displace other technologies and create new markets.

He said, “As the technology has improved the diode markets have expanded into industrial, medical, entertainment, military, and scientific applications.”

Sticking with the business theme, Keeney looked at the fluctuating stock prices of laser diode manufacturing companies as the cost-per-watt of emitters has decreased over the past 20 years. Focusing on the telecom sector bubble around 2000, he commented, “I think that the industry bubble in 2000 was a horrible, crazy time. It was arguably the largest destruction of capital in history. So should we be concerned about it happening again? I think we should always be concerned when equity prices are high on a historical basis, as they are again today.”

The nLight CEO continued: “If you look underneath this, then the company that dominates laser diode stock price data has increased over the past 20 years. With its ever-broadening portfolio of laser sources and photonics products, Toptica proves the diode markets have expanded and create new markets.

He said, “As the technology has improved the diode markets have expanded into industrial, medical, entertainment, military, and scientific applications.”

Simplicity the key for at-sea laser links

Getting secret US Navy data flowing between ships, or ship to shore, on stormy seas, without distortion, with the tightest security, remains a top optics challenge, even after 20 years of work on the topic at the Naval Research Laboratory (NRL).

One option for the Navy these days is the line-of-sight method employing freespace optics (FSO), also known by some as atmospheric laser communications. Linda M. Thomas, a researcher in electronic engineering from the Advanced Space Systems Technology Branch of NRL, explained in a Photonics West presentation on Monday how in the last ten years engineers have put together a user-friendly system that has surprised some of its early testers.

“What surprised us at recent demonstrations was the feedback from people, who said, is that all I have to do?” she said. The key attribute seems to be simplicity. “The hard part is building the system around the technology,” Thomas told delegates. “Making things straightforward to operate is really key. We don’t want six months of learning how to use them.”

Cost is another challenge. To keep systems affordable, Thomas said her team is using readily available, commercial products including controllers and gimbals. “To custom-make a detector will never get us to the price point,” she noted. “We use off-the-shelf products.”

Scientists at the University of Macau have used functional near-infrared spectroscopy (f-NIRS) to show apparent differences in the neural responses of problem gamblers and a control group.

“We found a significant difference in pre-frontal activation with our gambling addiction group versus the healthy control group,” concluded Zhen Yuan in his presentation, part of the Clinical and Translational Neurophotonics conference during the weekend’s BIOS sessions.

The small-scale study, which looked at responses in three problem gamblers and three control subjects, used near-infrared emitters at 690nm and 830nm wavelengths and a sampling rate of 50Hz to monitor levels of oxyhemoglobin and deoxyhemoglobin in the area of the brain associated with personality traits and decision-making.

Yuan and colleagues set up a series of win-lose scenarios, finding a particularly striking difference between the gamblers and the control group when comparing signals from the brain’s right frontal gyrus during a “lose” scenario.

The team at the University of Macau’s Bioimaging Core, part of the Faculty of Health Sciences, has now begun using the same technique to compare frontal lobe activity in children with Down syndrome to those without the condition. The genetic disorder has a range of physical effects, including to gross and fine motor skills, and Yuan told delegates that the Macau team has measured different responses in initial studies.

Mike Hatcher
Photonics West: The world's largest marketplace for photonics, optics, imaging, and industrial lasers

“Beta-lactam antibiotics it resists include penicillin and methicillin. Under an optical microscope, she accidentally found the mechanism for how blue light kills MRSA, and ran a series of experiments over the last one and a half years, using blue light under various conditions.

Incorporating irradiance using blue light at specific wavelengths, she achieved the annihilation of MRSA by photobleaching staphyloxanthin, the pigment that gives S. aureus its golden color.

“A 30-year-gap has formed between the emergence of this resistance and the clinical introduction of antibiotics,” she said. “There is no effective solution right now and novel approaches are needed.”

“Despite the seven priority goals outlined in the BRAIN 2025 report, the current focus in neurophotonics R&D is on developing new types of photonics-based imaging tools and techniques. All have a common purpose: to glean ever more detailed information about how the brain and its myriad components work, individually and as a whole.

“The focus of the BRAIN Initiative is on mapping neural circuits and understanding how they function in health and disease,” said Edmund Talley of the US National Institutes of Health in his presentation at Sunday’s Neurophotonics “Hot Topics” plenary session. “The idea is to have a ‘tool-driven revolution’ that will enable new discoveries to unlock the mysteries of the brain. We don’t know what we’re going to find, but with these new technologies will come new discoveries.”

The early fruits of these efforts took center stage at the plenary, which featured nine 10-minute presentations on the state-of-the-art in optical brain imaging at the micro and macro levels. First up was Ed Boyden of the Massachusetts Institute of Technology, whose group has developed a method they call “expansion microscopy” that enables commercially available, diffraction-limited microscopes to study neural circuits in a large-volume, multiplexed fashion. Using this approach, they can image large, 3D specimens with nanoscale precision by embedding them in a “swellable” polymer, homogenizing their mechanical properties, and exposing them to water. “We can do extended nanoscale imaging at high speed on ordinary microscopes, and it’s pretty easy,” he said.

Na Ji of the University of California, Berkeley discussed her team’s efforts to develop an alternative to two-photon fluorescence microscopy for imaging the brain: fast in vivo volumetric imaging using a Bessel beam — a non-diffracting light beam with an infinite number of rings — to achieve video-rate (30 Hz) quality images with synaptic resolution. According to Ji, one current goal in brain imaging is to understand the input-output relationship for neural circuits and the anatomical and functional relationships between individual neurons.

“Want sub-micron spatial resolution to resolve individual synapses in a scattering sample. And while two-photon fluorescence microscopy has the potential to satisfy this, the problem is it is a little slow because of the serial 3D scanning of two-photon-excitation focus,” she said.

Elizabeth Hillman of Columbia University described another innovative and proprietary imaging technique developed in her lab: SCAPE (swept confocally aligned planar excitation), a high-speed cellular microscopy technique that combines the benefits of light-sheet imaging with confocal scanning principles to capture the activity of large numbers of neurons throughout the brain. “SCAPE is a hybrid between light-sheet microscopy and spinning-disk confocal microscopy that enables high-speed 3D imaging that can tolerate natural movements,” Hillman explained.

“The idea is to have a ‘tool-driven revolution’”

EDMUND TALLEY, NIH

Blue photons set to tackle MRSA menace

The mighty superbug MRSA has met a worthy adversary in Boston University’s Pu-Ting Dong, who is armed with blue light. The graduate student, who won SPIE’s Translational Research Award for 2018, including a check for $500, described her work in a half-hour talk during Sunday’s conference sessions.

She was drawn to the battle against methicillin-resistant Staphylococcus aureus, commonly known as MRSA, because of its growing threat. “MRSA is indeed a huge problem,” she said. “The bacteria have developed resistance to all beta-lactam antibiotics.”

Increasingly found in hospitals, MRSA is now ranked second as a cause of death by drug-resistant bacteria in the US. The beta-lactam antibiotics it resists include penicillin and methicillin.

She developed her strategy along with the Cheng research group at Boston University. “It uses a drug-free photonic approach to photobleach the staphloxanthin, which is a very important virulence factor.” Their findings, she said, pave the way for reusing an old class of antibiotics.

FORD BURKHART

PHOTONICS WEST. SHOW DAILY

PUBLISHED BY SPIE, 1006 20th Street Bellingham WA 98225 USA
Tel: +1 360 676 3290
www.spie.org

EDITORIAL Original Content Ltd.
Tel: +44 (0)117 939 4887

ADVERTISING SALES
Lacert Media
Tel: +44 (0)1372 905 5330

PRODUCTION & PRINTING
Tradeshow Media Partners
200 Valley Drive, Suite 36
Brisbane, CA 94005
Tel: +1 415 371 1525

SPIE.
What does full-service mean at Mahr®?

When you and your business invest in a solution from Mahr, you gain a worldwide metrology partner. Access to our wealth of industry experience and expertise, extensive research and development into the newest metrology advances, industry leading service and support network, all while backed by the Mahr Inc. reputation for precision and quality.

Visit us at booth # 1407 at Photonics West to learn what Mahr can do for you!
Advance Your Innovation with
End-to-End Photonic Solutions

From Source to Sensor... and Everything in Between

From discrete components, to turnkey modules, to complete systems... Engage Excelitas for single-source ease and reliability across every aspect of your system’s photonic requirements. We excel in delivering sophisticated custom solutions that enhance system performance, expedite time-to-market and ultimately sharpen your competitive edge. Discover your partner for application-specific expertise and enabling photonic technologies.

Visit us at SPIE Photonics West, Booth 1031 to discuss your specific photonic requirements

www.excelitas.com • www.qioptiq.com