Lasers pull crowds into Moscone exhibition

Nearly 1300 exhibitors welcomed an anticipated 20,000 visitors to the Moscone Center yesterday morning as doors opened at the 2013 Photonics West industry exhibition. Products and technology demonstrations on show included a raft of new lasers from the likes of Newport Spectra-Physics, Coherent and IPG Photonics, as well as a new real-time CMOS hyperspectral imaging system from imec. Turn to page 04 for our round-up of product announcements.

Quantum optomechanics: a new toolbox

Tuesday’s OPTO plenary kicked off with Markus Aspelmeyer of the University of Vienna describing recent developments in quantum optomechanics, where quantum effects are being put to use driving macro systems. “Sensing based on purely classical mechanical oscillators has now become amazingly accurate, able to sense displacements of atometers and masses measured in yoctograms [10^-24g],” he told the audience.

The approach potentially provides a new toolbox of techniques for engineers to use, in applications where the manipulation of photons feeds through into action on the nano-, micro- or macro-scale. In some cases a single universal coupling system might be feasible, exploiting the effects across the full breadth of this size range.

This could allow engineers to make good use of quantum phenomena previously thought to be undesirable, and turn them to advantage. “The inherent quantum-mechanical noise in a laser signal has always been a potential problem for some applications,” said Aspelmeyer. “But recent experiments have shown that we might be able to produce mechanical action from the native shot noise of laser itself.”

Other possibilities include the development of non-volatile memory cells, in which bistable mechanical components are set and flipped exclusively by incident photons. Another could be optomechanically-induced transparency, a quantum interference effect that could deliver “on-chip mechanical storage of light,” according to Aspelmeyer.

continued on p.30
PCO.EDGE – THE FIRST CAMERA SYSTEM WITH THE REVOLUTIONARY
sCMOS IMAGE SENSOR

Bringing to light! The new camera system PCO.EDGE represents a perfect combination
of high resolution, extremely low readout noise, and superior dynamic – at low light,
for excellent image quality even at high frame rates. Discover the new possibilities in
the range of high performance applications.
For more information please visit www.pco-tech.com/scmos-cameras/pcoedge/

- high resolution 5.5 megapixel
- readout noise < 1.1 electrons
- dynamic range > 27 000 : 1
- maximum frame rate 100 frames / s

www.pco-tech.com
In Europe contact: www.pco.de

Visit us at:
Photonics West
5 – 7 February 2013
Booth # 2123
Ten make start-up challenge finals

Nineteen semi-finalists gathered for the Jenoptik-sponsored 2013 SPIE Startup Challenge, with ten making their way into today’s final (3:30-6:00pm in Moscone 101, open to the public). A diverse group of researchers has three minutes to pitch their new photonics startup concept. All ten will win a sponsorship to attend the Entrepreneurship Academies organized by UC Davis, while the winner will walk away with a $10,000 prize.

Javid Khan kicked off proceedings with his company Holoxica’s holographic display technology. His business plan starts with running a joint R&D program with a large player in the automotive industry, to create lower-cost displays for cars. Khan wants to further expand into medical display and computer gaming markets.

Finalist Arun Chhabra from 8tree presented the fastCHECK system, designed for the rapid inspection of rivets for aircraft. He explained: “It is imperative for structural integrity that external rivets sit perfectly flush with the surface.” 8tree’s product is specifically designed for quick inspection of rivets to speed manufacturing and maintain the longevity of the aircraft. Chhabra says that the 3D scanner is both less expensive and more multi-functional than current devices on the market.

A new imaging modality for breast cancer care was introduced by Alexander Oraevsky, the CEO/CTO of TomoWave Laboratories in Houston, TX, namely the Laser Optoacoustic Ultrasound Imaging System. Oraevsky said: “With one instrument, we can revolutionize and simplify breast cancer care.” The company is looking for $2M to supplement an existing $3M of capital already obtained, to help achieve FDA approval. “The money we are looking for will allow us to build a clinical system and complete a 100 patient study,” added the entrepreneur.

Judge Mark Wippich, a partner at consulting firm Lightwave Advisors, said of the challenge: “All of their business plans need some work but they’re all on the right path. I have a lot of respect for people who are willing to get up there for three minutes and pitch their idea and take our questions. It takes a lot to do that.”

GOLDIE GOLDSTEIN AND CHRISTINA C.C. WILLIS

The ten finalists for the 2013 SPIE Startup Challenge

Arun Chhabra, 8tree; fastCHECK: a revolutionary 3D surface inspection system.
Jeppe Dam, DTU Fotonic; IRSee: an add-on for a camera visualizing chemicals in infrared spectrum.
Sanjee Abeytung, Memorial Sloan-Kettering Cancer Center; Rapid Pathology at the Bedside.
Swapnajit Chakravarty, Omega Optics Inc.; Silicon chip integrated, high-throughput, highly sensitive and specific diagnostic microarrays for the detection of cancers, allergies and infectious diseases.
Frank Palmer, ColdSteel Laser, Inc.; Remote image-guided endoscopic surgery (RIGES) platform.
Ryan Denomme, Nicoya Lifesciences Inc.; Compact, low-cost, high-performance optical biosensors for point-of-care diagnostics.
Christopher Glazowski, Memorial Sloan-Kettering Cancer Center; A low-cost ($5000 retail) device for non-invasive screening of oral cancers worldwide.
Alexander Oraevsky, TomoWave Laboratories, Inc.; “LOUIS-3D” laser opto-acoustic ultrasonic imaging system.
Rafael Piestun, Double Helix LLC; Double Helix optics: See More, See Clearer.
Michael Engelmann, MACH3 Lasers Acoustically tunable DFB laser for mass-market applications.

Gu illuminates China’s rapid laser progress

China’s industrial sector may have slowed in the past year but laser-related activities are booming. That was the message from industry consultant and LASE symposium co-chair Bo Gu at publisher Pennwell’s 25th Lasers and Photonics Marketplace Seminar.

Gu said that both the Chinese laser industry and its domestic market will continue to grow at a rapid pace over the coming decade; and predicted that China’s share of the world laser market will grow from its current 15% to more than 25% over the next 20 years. “To date there have been around 15,000 high-power laser systems installed across China and typically each year more than 20,000 low-power laser systems are sold,” he said. “By 2012, there were more than 25 Chinese companies making fiber lasers.”

Gu added that high-power laser welding was supporting China’s industrial progress, saying: “This includes the recent use of 15kW fiber lasers for welding 18mm stainless steel in the fabrication of components for nuclear power plants; laser additive manufacturing of the titanium alloy for the new C919 Chinese commercial airplane; and the recently opened first tailored blank laser welding line.”

The market for high-power laser welding equipment in the country should grow from $80 million in 2008 to $420 million by 2015, he added. The Chinese government has supported market development by establishing the National Laser Technology Alliance in Wuhan last April, followed by the National Laser Industrial Cluster Zone in Wenzhou.

Gu predicted increasing penetration of lasers into all types of manufacturing; domestic fiber laser manufacturing to grow and become vertically-integrated; domestic kilowatt lasers to compete with established US and German manufacturers, and price pressure to spread from low to higher power sources.

The consultant concluded that increasingly successful domestic laser developers would inevitably start to compete more in export markets, while the Chinese marketplace would undergo significant consolidation.

MATTHEW PEACH
Ultraviolet fiber sources debut at multicolored laser exhibition

As doors opened Tuesday morning and the crowds streamed in, they were met with a host of new product launches at the Photonics West main exhibition. Responding to customer demand for more power, higher efficiency, wider tunability and smaller footprints, exhibitors once again raised their game. Here’s our first round-up of the innovations on show at the Moscone this year:

A new ultraviolet fiber laser from Coherent offers the precision processing capabilities of a short-pulse, picosecond laser, combined with high throughput speed characteristic of a Q-switched, diode-pumped, solid-state laser. The Daytona 355-20, using a photonic crystal fiber from NKT Photonics, delivers more than 20W in 1 ns pulses, at repetition rates above 1 MHz (at 355nm). It produces a TEM00 (M² <1.3) output beam, making it ideal for precision micromachining.

Newport’s Spectra-Physics was another to launch a fiber-based ultraviolet source. Its Quasar, actually a “hybrid” fiber and solid-state laser, delivers high-power UV and green outputs at high repetition rates. It produces an average UV power of more than 40W, while the Quasar 532-70 puts out above 70 W of green output power at more than a 200 kHz pulse repetition frequency. Both models operate over a wide repetition rate range, from 1–500 kHz for ultra-high speed micromachining and output excellent beam characteristics (M² <1.3) with low noise.

Trumpf introduced the latest generation of its Programmable Focusing Optics, the PFO 3D, for scanner welding, cutting and drilling. The PFO 3D features a larger work area, higher maximum laser power, and enhanced electronics for increased accuracy with remote welding — now a key technology in automotive manufacturing.

The German company also launched a UV laser, its TruMark 6350, offering improvements in design and performance for marking applications. Increased average power with the same high beam quality leads to an increase in repetition rates and, therefore, higher processing speeds. The higher pulse peak power and pulse energy allow the laser to achieve better mark contrast across a wide range of materials, in applications such as color change on plastics and glass marking.

Trumpf’s TruDiode 903 direct diode laser also made its debut. The lasers are available with output powers of up to 3 kW for welding, brazing, hardening, and heat treatment, and are said to possess a beam quality comparable to that of lamp-pumped lasers — even at high output power — at significantly lower operating costs.

IPG Photonics extended its range of ytterbium fiber sources with the new YLS-Y13 fiber laser. This CW low-mode fiber laser system represents a new generation of kilowatt-class industrial fiber lasers designed to enhance the company’s high-power industrial laser range.

Notable improvements on IPG’s previous ytterbium laser models include: increased wall-plug efficiency from 30% to 33%; beam parameter product vs. output power doubled; a new fiber block damage threshold also doubled; and the mean time of uninterrupted laser operation increased to more than three years.

The YLS-Y13 comes in compact and standard formats. Both forms offer a randomly polarized, 1070nm output, from the ytterbium-doped laser featuring a red aiming diode. The compact version delivers between 1kW to 4kW and the larger format between 1kW and a remarkable 100kW for a wide range of material processing applications.

Edmund Optics was demonstrating its “reversible” Techspec compact instrumentation imaging lenses. These streamlined versions of fixed focal length imaging lenses are designed for instrumentation integration. The innovative design means that the Techspecs can operate as economical conventional lenses in one orientation or as a microscope lens when the optics are simply reversed.

An adjustable, lockable focus enables setting the best focus position prior to integrating into instrumentation, avoiding future adjustments. The wide range of fixed aperture options ensures maximum flexibility of resolution, throughput, and depth of field.

For modifying resolution, throughput, and depth of field, each focal length of these compact lenses is offered in a range of f/# options. Choosing a higher, slower f/# increases the depth of field. Different aperture stop versions are offered.

These compact lenses are designed specifically for volume integration into applications such as analytical medical devices, including benchtop-based blood analyzers. Customized f/# versions are available to suit diverse instrumentation application needs.

Jenoptik presented a wide range of new products embracing optics, lasers and infrared technology. For laser materials processing, Jenoptik showed its updated femtosecond laser, the JenLas D2.fs. While maintaining its stable beam quality, output power and pulse repetition rate have been increased to allow for faster material processing in industry and medical technology applications.

The company also showcased its new ultra-precision optics, processed using ion beam figuring. The F-Theta lens series Silverline complements Jenoptik’s portfolio of full fused-silica lenses intended for micro-processing with high-power fiber and picosecond lasers.

And in the field of sensor systems, Jenoptik was showing its latest high-definition thermography camera, the IR-TCM HD 1024, to the US market for the first time. The handheld camera allows for the detailed and precise analysis of temperature distributions, in particular in the case of large objects or large focusing distances.

MATTHEW PEACH
Get all the wavelengths you need from **NKT Photonics**

SuperK supercontinuum white light lasers (400 - 2400 nm)

Koheras Ytterbium fiber lasers (1030 - 1130 nm)

Koheras Erbium fiber lasers (1535 - 1585 nm)

Argos high-power CW OPOs (600 - 4600 nm)

Meet us at Booth# 417
Unrivaled Linear Variable Filters

See OUR NEW Linear Variable Order Sorting Filter

BiOS Photonics booth 8642
Photonics West booth 642
South Hall A

We help ideas meet the real world / FILTERS.MADEBYDELTA.COM

Innovations in Low Light Imaging
Providing Digital and Optical Solutions in Low Light

See why PHOTONIS is a global leader in low light imaging solutions

Digital CMOS Low Light Cameras
<4e- read noise
High speed and high resolution

Photon Imaging Components
Sub-nano second timing
Customize to spectral response

www.photonis.com

See us at Booth 5419
Photonics: enabling; disruptive; transformational
SPIE’s industry and market strategist Stephen G. Anderson on three photonics applications with the potential to make a profound impact on society.

Photonics is regularly described as an enabling technology and has been identified by many governments as essential to future economic growth. But it can also be transformative. By disrupting the status quo it can bring about technological changes that have a profound impact on society. Here are three examples of technologies that I believe have that potential — though you can find many others in the sessions and exhibits at Photonics West.

Additive manufacturing
Last year Pipeline Orthopedics (Cedar Knolls, NJ) was granted 510(k) clearance by the US Food & Drug Administration (FDA) for a total hip replacement system. It was a “first”, insofar as the prosthetic incorporates a novel bio-compatible porous metal structure fabricated using laser sintering.

Over the next few years we will hear much more about 3-D additive manufacturing, also known as 3-D printing, not least because — as in the example above — it enables production of materials and parts that simply cannot be fabricated otherwise. 3-D printing also means that the cost of a part is independent of its production volume; it lends itself to automation (reduced labor costs); and the 3-D designs are easily updated in standardized CAD files.

The many variants of 3-D printing include stereo lithography (SLA) and laser additive manufacturing (LAM), which are already being used by auto makers to make or prototype parts, and LAM could be approved this year to fabricate an F-35 Joint Strike Fighter part.

This is just the tip of the iceberg. Last August, the US National Academies noted that 3-D manufacturing is vital for the economic well-being of the US, while both the US and the UK governments among many others are funding programs to speed its advance to commercialization. It’s not only governments that are taking 3-D manufacturing seriously ... the technology has attracted the attention of major companies like GE Aviation and Lockheed Martin as well as the investment community. Additive manufacturing is set to profoundly disrupt our global manufacturing infrastructure.

Optogenetics
At a much earlier stage of development but with no less disruptive potential is the emerging field of optogenetics. By combining genetics with optics, researchers are able to control brain activity in specific cells responsible for a movement, a mood, or disease. Inserting light-sensitive proteins into specific neurons enables light to stimulate and “turn on” the neuron, with precise behavioral results. The hope is that by understanding neural circuits, brain function can ultimately be controlled or modified to mitigate the effects of conditions such as depression, epilepsy, or Parkinson’s disease.

Laboratory results show promise, though experiments are currently limited to laboratory animals and there’s no guarantee that the techniques will transfer to humans. Nonetheless, it’s an exciting field that could transform neurology. One of its pioneers, Karl Deisseroth of Stanford University, opened a brand new BiOS conference on the topic with a keynote presentation on Saturday morning (conference 8586).

Cell phone diagnostics
Another BiOS presentation highlights the benefits of adapting a mass-produced, widely available device to niche applications, an idea that has seen past successes (Ocean Optics, for instance, created its first mini spectrometers based on a fax machine sensor) and which now holds promise for future portable medical diagnostic devices.

In fact, smart-phone apps to assess skin lesions for cancer are already available, but at UCLA Aydogan Ozcan’s research group is pioneering lensless (on-chip) imaging for a cost-effective and portable cell monitoring platform using a mobile phone. At this year’s BiOS, the team describes a cellphone attachment for reading and digitizing rapid diagnostic test (RDT) results allowing real-time global mapping of infectious diseases.

We can anticipate further developments in portable diagnostics as researchers accelerate their efforts, motivated partly by the Qualcomm Tricorder X PRIZE—a $10 million competition to develop a palm-sized wireless device that monitors and diagnoses health conditions. Many readers will recognize the Tricorder name, which originated with the Star Trek TV series in 1966 and refers to a portable diagnostic device. Just imagine how personal healthcare would be transformed if people could accurately diagnose themselves from their home, before they contact a doctor. That’s what photonics can do.
Our Cameras Are NIR Perfect.

- Sensors Unlimited NIR and SWIR products by UTC Aerospace Systems deliver clear, lifelike images
- Detect lasers, see through glass and plastic, and image through dust, fog, or haze in daylight or low light
- Compact, uncooled, no moving parts
- Standard glass optics
- Easy-to-integrate
- Spectroscopy / microscopy / biomedical analysis / machine vision / industrial process control / security & surveillance / laser imaging / art inspection / silicon & solar cell inspection

phone: +1 609-520-0610
sui_sales@utas.utc.com
www.sensorsinc.com

See us at BIOS, #8811 south hall
Photonics West, #811 south hall
BiOS: optics meets biology and healthcare

Optogenetics, brain control with light and cancer detection with photoacoustic imaging: just some of the highlights of this year’s BiOS, says symposium co-chair R. Rox Anderson.

The BiOS Hot Topics session is always one of the most eagerly anticipated parts of the meeting. What is its appeal?

I find this session to be incredibly stimulating and a constant source of surprise. It is a chance for some very good speakers in areas that are rapidly moving to give a talk that is not constrained by the usual format. Their results are scientifically accurate while at the same time forward-looking. I always find that the conference hall is buzzing after those Saturday night talks, and I like that. It really sets the tone for the whole meeting.

What emerging technologies and techniques are you looking forward to hearing about this year?

We have introduced four new BiOS conferences this year: Optogenetics and Hybrid-Optical Control of Cells; Bioinspired, Biointegrated, Bioengineered Photonic Devices; Optical Methods in Developmental Biology; and Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications.

Personally, I’m drawn towards the bioinspired devices conference, as well as optogenetics. Even though these bioinspired devices are obviously some way off in terms of becoming products, I feel this conference is going to have some traction. The use of biological materials in the design of optical systems may sound bizarre — but why not?

Think of an endoscope, for example. What if it was the diameter of a human hair and made of biological materials that could be reabsorbed by the body? You could use the endoscope, and then just leave it inside the body. I feel this conference will be a wellspring of production of the light-sensitive molecule rhodopsin. We can then introduce this into a complex organ such as the mammalian brain, and use light to activate the rhodopsin in different cell types. It is a wonderful combination of capabilities.

When you consider that we also have a fantastic suite of in vivo microscopy techniques, you can capture detailed structural information while at the same time use light to trigger responses in the brain. We still don’t have a wiring diagram for the brain, so I find developments like this incredibly interesting.

Which new optical technologies are emerging for mainstream healthcare?

Optical coherence tomography (OCT), which has been a strong part of the BiOS meeting for 20 years now, has certainly made the transition into clinical practice for some organs. Now, as the capability of OCT gets better and better, so it will be applied more broadly. Researchers today are working to drive the speed, and particularly the depth and resolution, of OCT.

One new variant is micro-OCT, which gives you images of individual cells in vivo that can be acquired through a catheter to study heart disease in humans, for example. I am always blown away by the results presented in this conference, and I know I will be blown away this year to see these cellular resolution images.

One technique that I feel is set to make the transition in the future is photoacoustic imaging. Here, laser pulses are absorbed by the target tissue, generating ultrasound waves that are detected at the surface of the target using an ultrasound transducer. There are a lot of papers being presented that concentrate on ways to increase the depth and resolution of this type of imaging. I feel that photoacoustic detection of deep structures is going to make it in medicine for applications such as detecting breast cancer.

What are your personal research interests?

Several years ago, I decided to tackle treating acne, and that is what I am actively working on today. We are pursuing two strategies, the first is to use photodynamic therapy (PDT) and the second is to use lasers that are selectively absorbed by lipids, which in turn have a photothermal action on the sebaceous glands. We haven’t used surgical lasers that are specifically absorbed by lipids before, and that is a strong personal interest of mine.

The lasers we use emit at 1726nm. At this wavelength, several lipid overtone vibrational modes have a sufficiently strong absorption that you can get a selective heating of the sebaceous glands. It is hard to get a high-power laser at that wavelength. To date, we have used a free-electron laser and a high-power diode source specifically designed for the project.

What is the current state of PDT in general?

I would say that every year that goes by, PDT takes another step up in terms of being a preferred therapy. There is a tremendous barrier to the adoption of new technologies, and that is what PDT has to overcome. It takes a long time for technologies to be proven, and that is the process that PDT is going through. PDT is not a first line therapy for any cancer that I am aware, but it is number two in many settings.

PDT will be a strong part of BiOS program again this year, where no doubt there will be steady and interesting progress. We will see presentations on spectroscopy, imaging and the basic understanding of the PDT process as well as discussions regarding new targeted drugs and treatment strategies.

JACQUELINE HEWETT

“I feel that photoacoustic detection of deep structures is going to make it in medicine for applications such as detecting breast cancer.”

where you see things first, and then later you’ll see them as products. I am very excited to hear about ideas that are at the fuzzy interface between optical and biological materials.

What is optogenetics? What can it do?

Optogenetics is a relatively new technique that has already spurred a tremendous amount of neuroscience research. One starting point is to extract the genetic code from bacteria that is responsible for the

Photonics West Show Daily
Wednesday, February 6, 2013

BiOS SYMPOSIUM HIGHLIGHTS:

- More than 2000 presentations
- 235-company BiOS Expo
- Final poster session (with OPTO) takes place: 6-8pm Wednesday, Room 103
Introducing the Tamarisk®

DRS Technologies expands the Tamarisk® family of thermal imagers with the Tamarisk®640. With four times the number of pixels and resolution of the class-leading Tamarisk®320, the Tamarisk®640 provides an expanded level of performance while maintaining its compact size and industry leading low power consumption. The Tamarisk® line leverages advanced 17 µm pixel pitch technology with our patented absorbing superstructure design to deliver unmatched thermal image quality in a versatile, durable, compact package built for easy integration into your most challenging applications.

drsinfrared.com/Tamarisk

Visit us at Booth #5427.

*Shown at actual size.
Introducing the Tamarisk® 640. DRS Technologies expands the Tamarisk® family of thermal imagers with the Tamarisk® 640. With four times the number of pixels and resolution of the class-leading Tamarisk® 320, the Tamarisk® 640 provides an expanded level of performance while maintaining its compact size and industry-leading low power consumption. The Tamarisk® line leverages advanced 17 µm pixel pitch technology with our patented absorbing superstructure design to deliver unmatched thermal image quality in a versatile, durable, compact package built for easy integration into your most challenging applications.

drsinfrared.com/Tamarisk

Visit us at Booth #5427.

*Shown at actual size.
Jenoptik CEO Michael Mertin became the head of the “Photonics21” European member association in late 2012. Matthew Peach caught up with him shortly before Photonics West.

What are you expecting from the Photonics21 role?

It is a challenge. I would like to try to influence the European community to push the optical industries as a means for wealth and growth. And for the industry to help overcome the economic crisis we are in, not just for now but for the longer term by supporting further development of optical technologies.

I am convinced that optical and related industries are key to our future and this is what I want to develop with the different stakeholders. In the next generation of Photonics21 we have to come to a point of collaboration between the different stakeholders, whether scientists, universities, industries of different sizes, and of course politicians.

My role is more like being an ambassador. Part of my role is to explain the European photonics position and the business model, the technologies and how governmental structures can enforce cooperation between industry and science. I would also like to encourage industrial companies to use public funding and leverage as a way to cover risks, so that they are willing to co-invest.

What will be your agenda for Photonics21?

It’s a bit early but an important point will be to establish an R&D funding structure for the growing photonics industry in Europe. To implement a co-funding structure as a dynamo for growth, to get the commitment from the European Commission (EC) for photonics funding until 2020; if this is achieved then Photonics21 will be successful. This will not be my personal success but the achievement of the whole organisation and for the whole of Europe.

What are some of the early tasks in your in-tray?

First I need to finish the Strategic Research Agenda and then, based on that, finalize the agreement on the financing of Photonics21 and the related upcoming projects along the value chain: research, small innovative companies, larger players, and then set up a structure to determine the objectives for all of these related projects. Then we will be having our next annual meeting in April 2013, at which we will discuss whatever Photonics21 is to be focusing on thereafter.

How will you balance your work between Jenoptik and Photonics21?

First of all the Photonics21 President’s role is more or less a representative function. I am not really leading the organisation in a formal sense. Most of all it is an ambassadorial role based on a few trips per year. This includes Photonics West which I already attend for Jenoptik.

Photonics21 is based on a membership of individuals and there is a lot of capacity in this organisation. This capacity is bundled in the Strategic Research Agenda. A lot of work is being done in the work groups...
and the real leading heads are the work group leaders and of course the stakeholders.

Can you describe the relationship between Photonics21 and the EC?

In my view the European Commission — especially under vice president Neelie Kroes, who is responsible for leading Europe’s digital agenda — understands these photonics industry development mechanisms. They are looking for effective instruments and processes; and how to leverage these philosophies to achieve a flying start.

I would also like to bring my experience with politics and institutions in Germany to the European level.

Do you aim to transfer Jenoptik’s successful business culture to the European photonics sector?

The role I have is not to transfer the Jenoptik culture to the European photonics community level. But perhaps we can learn something from Jenoptik as a high-tech company with lots of subsidiaries and smaller entities worldwide. The photonics market, on both the customer and supplier sides, is highly fragmented.

Is that a problem? Yes in certain parts due to economies of scale. But it’s also a big advantage because the applications on the photonics side are very high-tech but very specialised to certain solutions, whether it’s in life sciences, machine building, manufacturing or automotive sectors.

How can Europe make the most of its photonics potential?

The point now is to find synergies and levels of cooperation between different partners. That is what I have had to do in the past and what I still have to do in a company like Jenoptik.

What is also important is to bring together the three big groups of stakeholders: from the scientific, the industrial and political groupings. This is exactly what the European Commission wants to achieve by establishing Public Private Partnerships (PPP).

How will the PPP work?

The EC wants to have a reliable and committed organisation to manage and secure the project funding between these three stakeholders. Furthermore they want to have a clear commitment from industry to co-invest.

From my point of view it’s fair that if political bodies are providing public money then they want to have a clear understanding about how it is spent: how we can leverage this money and how can we secure the future of work, wealth and employment in Europe.

Just giving this public funding to certain companies or institutes does not really guarantee these synergy effects. So the EC is asking for help from Photonics21 to organise these kinds of commitments. In principle, this is not a bad idea but the devil is in the details, so we have to develop the ideas, agree and implement them.
Michael Mertin

continued from p.13

usually distinguish between funding and subsidising development. For example, if funding is not dedicated to growth, then it is really a subsidy.

In my view, the best method of funding is the mechanism that encourages further private money for even bigger co-investment. This is exactly what we want to achieve with the expertise of the Photonics21 members. This means bringing stakeholder groups together, constructively.

Considering the problem of taking new developments to market — well, with classical funding you just give money to research institutes and get back research that may not necessarily be connected to market developments. But if you involve private money then there is the incentive for a financial return.

So if you are able to bring big companies with an international footprint together with smaller entrepreneurial companies with scientific institutions, you will have the best of all worlds together, including the spending on the research. The idea is not to fund these three parties separately but to bring them together under the umbrella of PPP to fund the projects working together. This is my dream.

Can Europe work effectively as a coherent photonics continent?

Consider what is going on in Jenoptik: total sales in Europe are decreasing slightly, but worldwide our total sales are increasing. At the same time, we are creating jobs in Europe. My point is that products coming out of Europe’s photonics sector are not necessarily used in Europe but they may be in demand elsewhere. This situation enables us to create new, well-paid jobs in Europe.

Look, for example, where the big computer chip manufacturing machines come from: ASML in The Netherlands is a good example, even though the main markets are usually outside of Europe. This kind of business model is something we should expand in Europe.

In the photonics industry in particular we have so many different niches, which address all of the key trends in the world, there is so much space for many photonics companies in Europe united under the umbrella of Photonics21 to find their place in the world market.

Do you have the job of making Photonics21 more popular across Europe?

It’s a difficult question. But Photonics21 is not an organisation of countries: we are an organisation of members. Photonics21’s Working Groups can talk to industrial and political leaders about the importance of innovation. We cannot live in old structures; we need innovation and we need revolution. What we hopefully can give to all of these countries and parties who are not yet looking at high technology industries is economic growth to develop trust in this industry.

If we can impart this kind of understanding across Europe, especially to political and industrial leaders, then we will be doing a good job.

Do you plan to make many changes to Working Group objectives, personnel, or major agendas?

The hand on the steering wheel is managed through a decision making process by the Photonics21 Board of Stakeholders. My role is more strategic — thinking about the basic principles of cooperation between the relevant parties in the value chain and seeing how we can have effective communication with politicians.

An interesting second aspect from my perspective would be if we can really implement the PPP strategy with the co-funding and with the broader spectrum of participating partners along the value chain. This will give a certain objective and target-setting to the entire industry.

Would you like to see the German model of adapting technical research into industrial success replicated across Europe?

I strongly believe that instead of subsidising certain innovations and institutions, the big success factor is definitely “project funding of innovation”, as it is called in Germany. This is something that the European Commissioner wants to implement at the European level, which I think is what should be done with the PPP plan.

If you think about this model then the role of the governmental institutions can be described just in two points. The first is to create an environment in which the different parties can work together — and they take some risk there, the funding from the governmental side. Secondly, you can address very basic trends, so you can say this is the direction, which we as a country or a union should take. Thus we can build mechanisms of how people can work together instead of working individually.
Welcome to the optics.org Product Focus which we have published specifically for Photonics West 2013 in partnership with SPIE and the Photonics West Show Daily. Here you will find an effective at-a-glance guide to some of the latest products available on the market with booth numbers if available making it easy for you to check out the products for yourself.

All this information and more can be found on the optics.org website. Simply go to www.optics.org for all the latest product and application news. Alternatively, why not sign up to our free weekly newsletter (www.optics.org/newsletter) and get the information delivered direct.

ImageMaster® Compact

The modular and cost-effective MTF Test Station for use in prototype and small serial production

OptiCentric® MAX UP

Designed to measure and assemble extremely large and heavy lenses, for Microlithography

Visit us at Booth #1608

Mirror Collimators

Fully aligned target projectors for testing and adjusting optical systems in IR, VIS and UV

Visit us at Booth #1608

Wells RESEARCH
A TRIOPTICS COMPANY

TRIOPTICS
www.trioptics.com

Davidson Optronics
A TRIOPTICS COMPANY
id220: Free-running NIR Photon Counter
NEW: also available with MMF optical input!

The id220 FR is a major breakthrough for single photon detection in free-running mode at telecom wavelengths. The TEC-cooled InGaAs/InP avalanche photodiode has been specially designed for achieving low dark count rate. The singlemode or multimode fiber coupled module can operate at detection probability up to 20% and with an adjustable deadtime; both parameters are adjustable via the USB interface.

The timing resolution is as low as 250ps at 20% efficiency. Applications are: Life sciences, Singlet Oxygen, Quantum optics, Spectroscopy, Fluorescence Lifetime and more.

Contact Details
Michael Dessert
ID Quantique SA, Ch. de la Maternière, 3
1227 Carouge/Geneva, Switz/Switzerland
www.idquantique.com
info@idquantique.com
Tel +41 22 301 83 71
Fax: +41 22 301 83 79

EKSMA OPTICS

KTP Pockels cells for Q-switching and pulse picking applications

New PCK series KTP Pockels developed at EKSMA OPTICS are based on specially grown high resistivity KTP crystals. KTP crystals have better optical homogeneity and higher damage threshold compared to RTP crystals. The outstanding feature is possibility to operate KTP Pockels cells at high duty cycles.

Features:
- More than twice smaller HV requirement compared to double BBO Pockels cells
- Operates at high duty cycles
- Very low piezo-electric resonances
- Standard apertures from 3x3 up to 8x8 mm

Contact Details
Daugirdas Kuzma
EKSMA OPTICS, Makavie nudis 11, Vilnius, LT-08412 LITHUANIA
www.ukmaoptics.com
info@ukmaoptics.com
Tel +370 5 227 99 00
Fax: +370 5 227 92 99

MOELLER-WEDEL OPTICAL GmbH

ELCOMAT

The ELCOMAT direct family is mainly intended for use in optical workshops. It is specifically designed for the following measurement tasks:
- Measurement of small angles.
- Ultra precision angular adjustment and calibration.
- Automation in assembly.
- Wedge and prism measurement.
- Control of angular position.

The main features are:
- Quick and easy measurement of angles with high accuracy.
- Multiple autocollimation image evaluation.
- Computer based evaluation.
- Connection to computer via USB 2.0 port.
- Easy service and handling.
- Easily embeddable into automated processes.
- Accuracy up to 0.3 arcsec.

Contact Details
MOELLER-WEDEL OPTICAL GmbH
Risengarten 1/0, 22880 Wedel, Germany
www.moeller-wedel-optical.com
info@moeller-wedel-optical.com
Tel: +49 4103 937 7617
Fax: +49 4103 937 76 60

Ibsen Photonics

New ultra compact OEM spectrometer

Our FREEDOM/VE 360-830 spectrometers combine compactness with high performance and are the ideal OEM solution for portable systems where performance cannot be sacrificed. We’re also displaying our ROCK NIR 900-1700 spectrometers which offer typically 4x higher throughput than conventional spectrophotographs; due to a low Frunenr and highly efficient transmission grating.

Our spectrometers are perfect for analytical instrument integrators because of the flexibility in choice of detector and electronics, as well as a robust and thermally stable operation.

Contact Details
Ibsen Photonics
Ryttermarken 15-21, DK-3200 Farum
www.ibsenphotonics.com
inquiry@ibsm.dk
Tel: +44 44 347 0001
Fax: +44 44 347 01 00

Optispac, Inc

Customized hermetic packages based on glass-metal seal and ceramic-metal seal hermetic

Optispac provides customized hermetic packages based on glass-metal seal and ceramic-metal seal hermetic. Diverse packages made of Kovar, Stainless Steel and other materials are available in different shapes as butterflies, rectangle, headers and etc. Our spectrum reaches out to Fiber-optical, Telecommunication, Microwave, Integrated Circuit and Hybrid Circuit.

We fulfilled GO900-1000 to manage everything in protection, traceability, and correction. We can control leakage less than 10^-8 atm*cm^3/s, and enable some packages running through 48 hours salt spray test.

Contact Details
Optispac, Inc
16614 Solidad Canyon Road, #322
Canyon Country, CA 91387-USA
www.optispac.com
sales@optispac.com
Tel +1 661 252 9678
Fax: +1 661 252 9857

JGM Associates, Inc.

Laser Diode Array Drivers

JGM Associates, Inc. (JGMA) exclusively manufactures and sells the Model 928 and Model 830 laser diode drivers. These are the same drivers developed by Ibsen Diode Labs (IDL) for operating high-power 1D and large 2D laser diode arrays, and that have a long history of proven reliability. In October 2012, JGMA acquired exclusive rights to manufacture the Model 928 and 830 from Mattoki Power Laser Diode, who acquired rights from SDL.

The Model 928 quasi-CW (QCW) laser diode provides peak current levels to 15A and can drive as many as 16 diode bars in series. The Model 830 QCW laser diode provides cw drive current levels to 15A and compliance voltage to 6V DC. The Model 928 and 830 both provide drive current waveforms with fast rise/fall times (10 microseconds).

JGMA is offering a $1,000 (13%) Photonics West Show discount on new Model 928 and Model 830 drivers ordered by Feb 15, 2013. Additional discounts are available for orders of two or more units. For example, if Model 928 and Model 830 are ordered at the same time, the Model 830 is offered at about half price. We have 928 and 830 units in stock and ready for immediate delivery. For more information and product data sheets, please visit: http://jgma-inc.com/248434.html

Contact Details
JGM Associates, Inc.
Burlington, MA 01803
www.jgma-inc.com
jgmanni@jgma-inc.com
Tel: +1 781 272 6692
Fax: +1 781 221 7154

ALPhANOV

Pulse-on-Demand Module PicoSecond

ALPhANOV is launching the PDM Pico, a new comer in its Pulse-on-Demand Module (PDM) product family.

The proven PDM Series are fiber laser diode modules that generate pulses on demand from an external trigger signal. The PDM Pico goes a step further by delivering pulses with durations down to 150 ps with high stability and extremely low jitter (<8 ps).

The PDM Pico is a direct family of the PDM Series. It is offered in two versions to fit different requirements:
- pulse duration up to 1.6 fs
- pulse duration up to 150 ps

The timing resolution is as low as 250ps at 20% efficiency. It is also a valid link protection at vulnerable break points. It is also a valid alternative to replace splices.

The DIAMOND’s revolutionary Fiber Optic DiaLink-Saver is a directly compatible connector. DIAMOND’s revolutionary Fiber Optic DiaLink-Saver is a revolutionary fiber optic connection.

It is an ideal solution for high speed rotation devices (typical applications are: Life sciences, Singlet Oxygen, Quantum optics, Spectroscopy, etc.)

DIAMOND’s revolutionary Fiber Optic DiaLink-Saver is a revolutionary fiber optic connection.

It is an ideal solution for high speed rotation devices (typical applications are: Life sciences, Singlet Oxygen, Quantum optics, Spectroscopy, etc.)

DIAMOND’s revolutionary Fiber Optic DiaLink-Saver is a revolutionary fiber optic connection.

It is an ideal solution for high speed rotation devices (typical applications are: Life sciences, Singlet Oxygen, Quantum optics, Spectroscopy, etc.)

DIAMOND’s revolutionary Fiber Optic DiaLink-Saver is a revolutionary fiber optic connection.

It is an ideal solution for high speed rotation devices (typical applications are: Life sciences, Singlet Oxygen, Quantum optics, Spectroscopy, etc.)

DIAMOND’s revolutionary Fiber Optic DiaLink-Saver is a revolutionary fiber optic connection.

It is an ideal solution for high speed rotation devices (typical applications are: Life sciences, Singlet Oxygen, Quantum optics, Spectroscopy, etc.)

DIAMOND’s revolutionary Fiber Optic DiaLink-Saver is a revolutionary fiber optic connection.

It is an ideal solution for high speed rotation devices (typical applications are: Life sciences, Singlet Oxygen, Quantum optics, Spectroscopy, etc.)

DIAMOND’s revolutionary Fiber Optic DiaLink-Saver is a revolutionary fiber optic connection.

It is an ideal solution for high speed rotation devices (typical applications are: Life sciences, Singlet Oxygen, Quantum optics, Spectroscopy, etc.)

DIAMOND’s revolutionary Fiber Optic DiaLink-Saver is a revolutionary fiber optic connection.

It is an ideal solution for high speed rotation devices (typical applications are: Life sciences, Singlet Oxygen, Quantum optics, Spectroscopy, etc.)

DIAMOND’s revolutionary Fiber Optic DiaLink-Saver is a revolutionary fiber optic connection.
Iridian Spectral Technologies

Visit us at Booth No. 306

Webstore for online purchase of standard filters

Iridian Spectral Technologies has introduced a new Webstore for online purchase of standard filters! You can now browse and purchase standard fluorescence filter sets at the industry's lowest prices. Soon to be available online – Iridian’s standard Raman filters, including new wavelengths (1064 and 405 nm) and offerings (diachronic mirrors).

Recently Iridian has developed several exciting new optical filter capabilities including the lowest cut-off "Nano-edge" Raman filters, multi-zone patterned filters, and highly durable MWR bandpass filters.

Come by the booth to learn more!

Contact Details
Iridian Spectral Technologies
2700 Sivanaa Cres, Ottawa, Ontario, Canada K1G 9P8
www.iridian.ca
inquiries@iridian.ca
Tel: +1 (613) 741-4513
Fax: +1 (613) 741-9986

MÖLLER-WEDEL OPTICAL GmbH

Visit us at Booth No. 842

GONIOMAT M

The GONIOMAT M is a semiautomatic goniometer with electronic image evaluation that is essential for measurement and testing of angles of optical components, such as prisms, polygons and wedges. Furthermore, it can be used for measuring and testing of angle gauges.

Advantages of the GONIOMAT M series:
- Short measurement times
- Elimination of the subjective error by electronic image evaluation
- Logging of measurement results
- Easy handling
- Portable due to the compact design

Two levels of accuracy:
- GONIOMAT MS class: 1.5 arcsec
- GONIOMAT M10 class: 2.5 arcsec

Contact Details
MÖLLER-WEDEL OPTICAL GmbH
Rosengarten 10, 22880 Wedel, Germany
www.moeller-wedel-optical.com
info@moeller-wedel-optical.com
Tel: +49 4103 937 7617
Fax: +49 4103 937 76 60

GPD Optoelectronics Corp.

Visit us at Booth No. 206

Two-color InGaAs over InGaAs Photodetector for Infrared Thermometry

GPD Optoelectronics Corp. announces a 2 mm InGaAs “laser” 2 mm InGaAs pin photodiode sensor for pyrometry. The bottom photodiode’s spectral response (1.7 to 2.6 um cutoff wavelength) can be customized to your temperature requirements. They are manufactured in the US.

Visit us at Photonics West 2013, Booth 206, or contact the sales office.

Contact Details
GPD Optoelectronics Corp
7 Manor Parkway
Salem NH 03079 USA
www.gpd-ir.com
sales@gpd-ir.com
Tel: +1 603 984 6865
Fax: +1 603 984 6866

Diverse Optics Inc.

Visit us at Booth No. 2406

Custom Precision Polymer Optics

When you’re looking for precision polymer optics to reduce cost, trim weight, simplify design, and improve performance, come to Diverse Optics.

We specialize in diamond turning (SPD) and precision injection molding of custom polymer optics.

Prototype to series production of spheres, aspheres, domes, convex/concave, plano/concave, bi-convex, free-forms, diffractives, Fresnels, prisms, light-pipes, cylinders, lens arrays, collimators, combiners, toroids, COTS, TIRS, micro-optics, mirrors, parabolics, off-axis, ellipsoidal, cylinders, and more!

Whether it’s diamond turned prototypes or thousands of molded optics, we’ll show you how polymer optics are perfected.

Contact Details
Ms. Letty De La Cruz, Sales Engineer
Diverse Optics Inc., 10110 Regis Court, Rancho Cucamonga, CA 91730
www.divers optic s.com
info@divers optic s.com
Tel: +1 (909) 593 9330
Fax: +1 (909) 596 1452

PI (Physik Instrumente) LP

Visit us at Booth No’s. 4821, 4919

Piezo Positioners, Nano & Micro-Positioning Systems from PI and PI micros

PI and PI micros provide the broadest and deepest range of precision motion technologies in the world, from 1 to 6 axis systems, from micron to nano precision.

Talk to our engineers at Photonics West, booth #4621 & #4919 (North Hall).

We have the experience to understand your application and will match it to the appropriate motion technology.

Contact Details
PI (Physik Instrumente) LP
USA: 16 Albert St, Auburn, MA 01501
Germany: Auf der Römerstrasse 1, Karlsruhe 76131
www.pi.ws
info@pi.ws
Tel: +1 508 832 3456
Fax: +1 49 721 48 46 0

PI and PI micos are the broadest and deepest range of precision motion technologies in the world, from 1 to 6 axis systems, from micron to nano precision.

Talk to our engineers at Photonics West, booth #4621 & #4919 (North Hall).

We have the experience to understand your application and will match it to the appropriate motion technology.

Contact Details
PI (Physik Instrumente) LP
USA: 16 Albert St, Auburn, MA 01501
Germany: Auf der Römerstrasse 1, Karlsruhe 76131
www.pi.ws
info@pi.ws
Tel: +1 508 832 3456
Fax: +1 49 721 48 46 0

LabSphere, Inc.

Visit us at Booth No. 1931

LabSphere now offers on-site calibration services for all brands of Uniform Source Systems!

SERVICE RECOMMENDED IF:
- System has operated for more than 50 hours
- System is more than two years old
- System has operated in dusty environment
- Quality Management System mandates annual calibrations on critical measurement equipment
- Monitor detector disagrees with calibration certificate

SERVICE FEATURES:
- Professional assessment of system condition
- Relamping sphere with before and after measurements
- Power supply calibration option
- NIST traceable measurements with reported uncertainty
- Certification calibrated on-site
- Minimal downtime with flexible scheduling

Contact Details
Customer Service
LabSphere, Inc., 231 Shaker Street
North Sutton, NH 03260
www.labsphere.com
sales@labsphere.com
Tel: +1 (603) 927 4266

Optics.org product focus

Photonics West 2013 Issue
DILAS Diode Laser, Inc.

DILAS’ fiber-coupled tailored bar

DILAS’ fiber-coupled tailored bar (T-Bar) modules are now capable of delivering up to 100W from a 200µm fiber at 793nm. The T-Bar was developed so that an automated active optics alignment can be utilized for efficient fiber coupling into a 200µm fiber. The device is a monolithic multi-emitter source which takes advantage of handling multiple emitters during each individual manufacturing step to lower complexity and enhance reproducibility of the beam quality and hence the fiber coupling.

Contact Details

DILAS Diode Laser, Inc.
9070 South Rita Road, Suite 1580
Tucson, AZ 85747, USA
www.dilas.com
sales@dilas-inc.com
Tel: +1 520 232 3480
Fax: +1 520 232 3499

Varioptic

Arctic 39N0 - 3.9mm clear aperture variable focus lens

Varioptic, the liquid lens company, announces a 3.9mm clear aperture variable focus lens. Designed for imaging and laser products requiring a large aperture, Arctic 39N0 features the same performance that has built the success of the Arctic series: excellent optical quality, large focus range, unmatched resistance to life cycles and shocks, ultra-fast response time.

Arctic 39N0 is the ideal choice for demanding applications such as machine vision, medical imaging, optical equipment and biometric devices. Come and see this new lens on Photonics West 2013 – booth #5402.

Contact Details

Varioptic - a BU of Parrot SA
24B rue Jean Baldassini
69007 Lyon
France
www.varioptic.com
Tel: +33 (0) 4 37 65 35 31
Fax: +33 (0)4 37 65 35 30

Xenics Infrared Solutions

Smallest SWIR line-scan cameras

Xenics’ uncooled Lynx SWIR cameras perfectly match the absorption spectra of low level photon emissions and provide increased subsurface penetration depth images. The Lynx cameras are a flexible solution with standard GigE Vision, Power over Ethernet or CameraLink interface. Furthermore you can change integration times from 1µs to several minutes. You will reach optimal image quality choosing from various configurations and multiple gain settings.

The cameras are offered in multiple line resolutions: 512, 1024 or unique 2048 which substitutes for costly multiple-camera solutions.

Contact Details

Xenics nv
Ambachtenlaan 44
BE-3001 Leuven, Belgium
www.xenics.com
sales@xenics.com
Tel: +32 16 38 99 00
Fax: +32 16 38 99 01

Voltage Multipliers Inc.

15kV Opto-coupler - High Voltage, High Gain, High Stability

VMI’s 15kV OC150HG opto-coupler is specially designed for applications requiring stable long-term gain and high isolation voltage. Electrical specs include -

- 15kVrms
- 1W
- DC Current Transfer Ratio 0.2% min.
- Compact design

The OC150HG is useful in circuits that need to be isolated, remotely controlled, or monitored. The OC150HG is axial-leaded and epoxy moulded.

VMI designs and manufactures high voltage diodes, opto-diodes, opto-couplers, multipliers, power supplies, rectifiers, and rectifier assemblies.

VMI is ISO9001:2008 certified.

Contact Details

Voltage Multipliers, Inc.
8711 W. Roosevelt Ave.,
Visalia, CA, USA 93291
www.voltagemultipliers.com
sales@voltagemultipliers.com
Tel: +1 (559) 651 1402
Fax: +1 (559) 651 0740

Uncovering a dark secret: the mystery of LED “droop”

Researchers refine their theories to explain LED droop, a controversial, mysterious malady that threatens the advance of affordable solid-state lighting. Richard Stevenson reports.

LED light bulbs have many attributes: they are efficient; they can last for 15 years; they are free from mercury; and they reach full brightness in an instant. However, the technology remains very expensive.

That will slowly change as prices will fall, with significant uptake of solid-state lighting possibly beginning with a hike in sales of LED replacements for 50W halogen lamps. Even at today’s prices, this LED bulb makes a competitive economic case for itself. Although it retails for three times the price of the halogen, it lasts ten times longer and draws only one-tenth of the power.

But the makers of LED light bulbs could find it far harder to displace the 60W incandescent and its compact fluorescent (CFL) equivalent. Solid-state light sources are more efficient than CFLs, but the performance gap is small, and LED bulbs have a price tag that will make many potential customers wince.

Early adopters insisting on the best are currently forking out about $30 for the Philips light bulb that won the US Department of Energy’s $10 million Bright Tomorrow Lighting Prize. Purchasing a bulb with inferior efficiency and color quality trims outlay, but not by much, with prices still tending to be above $20.

Solid-state bulbs will need to sell for less than half that figure if they are to thoroughly displace the incumbents. And to do that the cost of the LEDs in the bulb must plummet because, according to a report published in August 2012 by the US Department of Energy, about half the cost of a 60W-equivalent light bulb comes from the packaged LEDs.

The most elegant way to slash the cost of these LEDs is to drive them at higher currents, so fewer are needed. But cranking the current up really high is not an option with today’s LEDs, because it leads to a significant reduction in the light output efficiency that prevents the solid-state bulb from delivering lower running costs than CFLs.

The most promising route to eliminating this reduction in efficiency, which goes by the name of “droop”, is to understand its origins and address them. However, despite much effort by both the academic and industrial community into fathoming its origins — this topic is the subject of two dedicated Photonics West 2013 conference sessions (8641; sessions 1 and 12) — the cause of droop is far from clear. Many theories have been put forward, but none has widespread backing, and this has led to a heated debate.

Droop origin: the arguments

To follow the arguments over the origin of droop, you must first understand how the LED works. To operate it, you apply a few volts across its two terminals, so that electrons are forced into the middle of the device from one side, while their positive counterparts, holes, are injected from the other. If the LED were perfect, electrons and holes would then accumulate in the middle of the device in narrow trenches, known as quantum wells, where they would interact to yield photons that exit the chip.

In practice, devices are never perfect, with weaknesses that include droop. Efforts to explain this mysterious malady have multiplied since late 2007, when two popular, very different theories were proposed. Back then researchers at LED chipmaker Philips Lumileds claimed that some electrons and holes don’t recombine to emit light, but interact in a non-radiative manner known as Auger recombination, and that this was the cause of droop. Auger recombination involves the

continued on p.20
interaction of three carriers — either two electrons and one hole, or two holes and one electron — so that one carrier is promoted into a higher energy state.

Within a month of that explanation being published, Fred Schubert’s group at Rensselaer Polytechnic Institute proposed an alternative: that electrons were passing through the quantum wells, so that instead of interacting with holes, they leak into the region supplying these positive charge carriers.

This team has spent the last five years refining its ideas on the origin of droop, and at Photonics West 2013 Schubert will detail its latest efforts, including a recent breakthrough that has come from reassessing equations describing the injection of carriers into an LED. These formulae were first proposed in 1950 by the Nobel laureate William Shockley, and Schubert’s team has amended them so that they include the mobilities of electrons and holes.

These new insights into the behavior of the LED have been applied to an analytical model, known as the “drift-leakage model”, that can accurately replicate the behavior of real LEDs. This model shows that droop is multifaceted, and its magnitude depends on polarization fields, temperature, and the speeds electrons and holes travel through the material.

Schubert claims that this model offers insights into how to combat droop: “Decreasing the carrier concentration in the quantum well is always helpful, and we find that p-type doping and electron leakage are factors that we need to tune and modify.” Droop is also influenced by polarization fields, which occur in piezoelectric materials, such as the nitrides that are used to make blue LEDs.

The model does not include Auger recombination, which is known to be stronger in semiconductors emitting at longer wavelengths. According to Schubert, if droop was prevalent in the blue LEDs used to make solid-state light bulbs, it would prevent efficient operation of their red and infrared cousins. This is not the case.

It’s a convincing argument, and one that a supporter of Auger recombination as the cause of droop — theorist Chris Van de Walle from the University of California, Santa Barbara — has given much thought to. Van de Walle, who is also giving a paper (8641-54) at Photonics West 2013, agrees with Schubert that droop is not an issue in red and infrared LEDs. But, concentrations that are achieved in traditional [red and infrared] LEDs.”

Van de Walle says that he and his co-workers are the only theorists to carry out “truly first-principles calculations” of Auger-based processes in nitride materials. “It’s a lot of work to write the code, and it takes many hours of supercomputer time to actually do the calculation, but then you get an accurate result.”

Simulations by this West-coast team suggest that...
Searching for the highest-performing optical plastic? Look no further.

NEW ZEONEX® K26R enables ultra-thin lens molding without defect and with low birefringence.

See us at booth #2532 or visit www.zeonex.com/K26R

BERLINER GLAS
Your partner for optical OEM solutions.
High Performance Lasers by Cobolt.

04-01 Series
Compact SLM DPSSLs
457, 473, 491, 515, 532, 561, 594nm
CW output power up to 300mW, rms <0.25%
Fiber pigtailed option

05-01 Series
High power single frequency DPSSLs
355, 491, 532, 561, 660, 1064nm
CW output power up to 3W, rms <0.1%

MLD Series
Compact Diode Laser Modules
405, 445, 473, 488, 515, 640, 660nm
Fast and deep direct modulation
Fully integrated control electronics

- Fluorescence imaging and analysis
- Raman Spectroscopy
- Interferometry
- Semi-conductor metrology

HTCure™ manufacturing for ultra-robust lasers and ensured reliability with up to 24 months warranty!

Meet us at booth n.2619, South Hall

www.cobolt.se
LED “droop” continued from p.20

droop in nitride LEDs is not caused by the standard, direct Auger process, but by Auger-based processes involving alloy disorder and phonons (lattice vibrations). These calculations have been performed for bulk indium gallium nitride, the material used in the quantum well, because it is not feasible to model a real device structure.

More recently, the insights gained from these calculations have been used to perform simulations on simple LED structures using the SimuLED package produced by STR Group of St. Petersburg, Russia. This effort compared the performance of conventional LEDs with identical structures grown on a different material plane, known as a non-polar plane. Switching to this plane eliminates intrinsic internal electric fields.

Experiments from other groups show that the non-polar LEDs have far less droop. Prior to performing calculations, Van de Walle suspected that this superiority stemmed from a higher quantum efficiency. But that’s not the case, according to his calculations, and he now offers a new explanation for the gains that can result from switching from polar to non-polar LEDs: “The light output is higher because the rate of the radiative recombination is greater in the non-polar wells.” In addition, he says that it is possible to have wider wells, leading to lower carrier concentrations that reduce the impact of the Auger process.

Theoretical argument

Not all theorists agree with the claim that Auger-based processes are by far the biggest contributor to droop. Calculations by a team from Boston University and the Politecnico di Torino, Italy, suggest that these non-radiative mechanisms are just one of several factors that impact device behavior at high currents.

Van de Walle questions the work, saying: “They are still calculating everything as if it’s just a direct Auger process. They introduce some kind of broadening into the curves because of electron-phonon coupling, but that doesn’t describe the process accurately. It’s an approximation, and they get a different result.”

In response, the US-Italian team argues that Van de Walle and co-workers use a broadening parameter that could have a dramatic impact on the results. “This broadening parameter is just a mathematical trick to deal with the singularity, and this approach is not consistent with the underlying theory,” says Francesco Bertazzi from the Politecnico di Torino. “In our work, the broadening is computed self-consistently from realistic electronic structures and phonon dispersions.”

Another theorist who doubts that Auger processes provide a full explanation for droop is Jörg Hader from the University of Arizona. Working in collaboration with former colleagues from the Philipp University of St. Petersburg, Russia. These calculations have been performed for density-activated defect recombination, and at high currents the current overflow becomes more important.” At really high currents, he thinks that it is just possible that Auger plays a role.

Hader is not alone in drawing on several conjectures for droop to explain this phenomenon. In 2011 Weng Chow from Sandia National Laboratories, Albuquerque, put forward a model that included contributions to droop from defects, carrier overflow and Auger recombination. Although this model drew several theories together, it did not have the backing of many researchers, who are still defending and strengthening their own ideas.

And so the debate over the cause of LED droop rages on. While the LED community appears to be getting closer to understanding this mysterious malady, it still has a long way to go to uncover a watertight, universally accepted explanation.

LED bulbs may be improving in quality and getting cheaper, but truly taking over the lighting industry will remain a challenge until a better understanding is reached. At Photonics West 2013, the debate over LED droop is set to continue.

ABOUT THE AUTHOR

Richard Stevenson is a freelance science and technology journalist, and the editor of Compound Semiconductor magazine.

PHOTONICS WEST LINKS:
• Monday February 4: OPTO conference 8641 Session 1 “High Current Performance and Droop Effect in LEDs I”
• Thursday February 7: OPTO conference 8641 Session 12 “High Current Performance and Droop Effect in LEDs II”
NKT Photonics aeroGAIN-ROD gain fibers ready to revolutionize the ultra fast laser market

The new aeroGAIN-ROD fibers from NKT Photonics are a new generation of ytterbium gain fibers designed specifically for the ultra-fast fiber laser marked. They offer the highest peak power capability in the industry while keeping pristine mode quality and robust coupling, making them the ideal gain media for the next generation of high-power ultra-fast fiber lasers. Fiber lasers have long been displacing solid state and gas lasers in the CW and slow pulse segments but the fiber revolution now moves towards ultra fast systems in the picosecond and femtosecond regime. In this market, nonlinear effects are the main limitation for output power and fiber systems has typically been limited to a few Watts. Bigger cores and shorter fiber are traditionally the go-to solution but often with compromises in mode quality and stability to follow. Not anymore. Utilizing the latest PCF technology, the new aeroGAIN-ROD fibers offer rock solid performance with long lifetime and they can handle peak power in the mega Watt regime while keeping a perfect near-diffraction limited beam quality, ideal for direct processing at 1µm or for further frequency conversion. The aeroGAIN-ROD is available in a PM55 and a PM85 version with 55 and 85 µm polarization-maintaining cores, respectively. Each model is available in a Standard and a Power version designed for different power levels so that you can chose exactly the fiber you need. The aeroGAIN line is already being used by several of the leading laser OEMs in the industry.

UTC Aerospace Systems
(Sensors Unlimited Products)
The world’s leading manufacturer of indium gallium arsenide (InGaAs)-based cameras and linear arrays

As experts in shortwave infrared imaging, Sensors Unlimited introduced the concept of imaging in the shortwave IR spectrum with simple, compact, uncooled cameras.

We offer a wide variety of high performance, near-infrared (NIR) and SWIR cameras, and 1- and 2-dimensional focal plane arrays. See our new 2048-pixel shortwave infrared (SWIR) digital linescan camera with 10 micron pitch for Spectral Domain Optical Coherence Tomography (SD-OCT) at Photonics West. This camera breaks new ground when used at the center wavelengths of 1.05, 1.31, or 1.55 microns by delivering A-line rates of >76,000 lines per second, near maximum for Base Camera Link® interfaces. Also on display, our next generation, high-resolution, mil-rugged GA1280JS SWIR camera, offers 30Hz full frame rate video, snapshot mode, global shutter function, and high sensitivity of 1.3 megapixel resolution at 1280 x 1024 pixels with 12.5 micron pitch. In addition, see our compact 640KTS large format camera image through a silicon boule to reveal cracks, voids, and abnormalities. It features high response from 0.9 µm to 1.7 µm at 30 frames per second and is easy-to-use with built-in non-uniformity corrections, automatic gain control, and basic image enhancement. Stop by Photonics West Booth #811 to see our full line of compact, shortwave infrared cameras ideal for a wide variety of applications including biomedical, machine vision/inspection, security/surveillance, military, spectroscopy, commercial and industrial use, and imaging through fog, dust, and haze.

DRS Technologies
expands Tamarisk® product line with introduction of high-resolution infrared camera core

DRS Technologies, a Finmeccanica Company, expands the popular Tamarisk® line by introducing the high-resolution, feature-rich Tamarisk®640, which is designed for original equipment manufacturers (OEMs) to incorporate into their products. The Tamarisk®640 uncooled thermal imaging camera provides an improved level of performance while maintaining its compact size. With a camera core weighing less than 60 g, the Tamarisk®640 offers remarkable performance, generating large, detailed analog and digital thermal images with a resolution of 640 x 480 pixels from its 17 µm focal plane array. The Tamarisk®640 core measures 46 x 40 x 31 mm and draws less than 1.5 watts of power. Six Athermalized lens options are available from a wide field of view (FOV) of 44° to a narrow FOV of 9°, as well as a no lens configuration allowing OEMs to mount their own specialized optics. Performance improvements include: a wide dynamic range from -40°C to +80°C, improved pixel saturation logic to maintain image quality at temperature extremes, Dynamic Image Contrast Enhancement (DICE) for greater image detail in both low and high contrast images and color output via Camera Link®. Backed by a two-year warranty, the Tamarisk®640 offers unequalled performance in a compact system for easy integration into security and analytics products, medical devices, unmanned sensors and handheld devices.

DRS Technologies, headquartered in Arlington, Va., is a leading supplier of integrated products, services and support to military forces, intelligence agencies and prime contractors worldwide. The Network and Imaging Systems (NIS) Company of DRS Technologies manufactures and supports advanced electro-optical sensor systems, and develops innovative networking capabilities that integrate these sensors in a broader tactical C4 environment. With operations in Melbourne, Fla., Huntsville, Ala., Dallas, Tex., Cypress, Calif., Columbia, Md. and the UK, DRS NIS is the prominent provider of infrared technology and sensors, embedded diagnostics, information solutions and operational energy for military agencies and industry partners alike. NIS combines proficiencies in the areas of design and production of infrared sensor systems, test and diagnostics, ground and airborne reconnaissance and targeting systems and platform C4 electronics to provide comprehensive and complete solutions to our Customers. These solutions deliver a technological advantage in target detection, recognition, identification, countermeasures and communication. DRS Technologies is a wholly owned subsidiary of Finmeccanica S.p.A. which employs more than 70,000 people worldwide. For more information about DRS Technologies and the Tamarisk® family of products, please visit the company’s website at www.drsinfrared.com.

Camera Link® is a registered trademark of the Automated Imaging Association.
Photonics-based components and multi-µ-functional devices

Optical device manufacture requires command of interdisciplinary microfabrication.

CDA GmbH (Suhl, Germany) is a specialist manufacturer of optical components and solutions in plastic for photonics-based applications. CDA also provides its customers with access to several high-end technologies for the development and manufacture of complex miniature devices incorporating printable electronics components and microfluidic channels.

Optical elements

Optical elements can be designed with spherical, aspherical or even non-rotationally-symmetric freeform surfaces, and arranged in any 2D array desired. Each individual element can comprise refractive structures exhibiting diffraction-limited performance, or binary/multi-level diffractive structures optimized to provide the best efficiency for the intended application. Both types ensure optimal optical performance in a broad range of real-world applications.

The primary intended uses for these components are for general illumination tasks, for example as diffusers or for improving efficiency in light emission from (3D) displays and OLED panels. Further applications include imaging systems for multi-channel cameras or for improving the effective fill factor of CMOS image sensors, or as projection optics for LED, VCSEL and fiber arrays.

While silicon and glass remain important material options, the vast majority of applications are served exceptionally well by various types of plastics, such as polycarbonate, PMMA and cyclo-olefin-copolymer. These materials provide all of the performance aspects required in most applications, but are lighter, lend themselves to high volume replication via injection molding, and are more cost efficient.

Application diversity through added functionality

CDA is additionally a champion of more complex devices that integrate several functions on a single chip. So-called lab-on-a-chip and other compact but sophisticated and sensitive devices are becoming increasingly important, for example, where physical chemistry, electrical and/or optical properties need to be tested on a small scale. Appropriate devices lend themselves well to high levels of parallelization, bringing cost reductions into a design but their manufacture does require a fully integrated process chain and command of several cutting-edge microfabrication technologies.

The manufacture in plastic means producing highly complex and functional microstructures with extreme precision, and doing so very cost efficiently under mass production conditions. The CDA approach is so attractive because of the number of available process steps and due to the nature of the functionalities – optical, electronic, microfluidic – that can be combined freely so as to optimize the performance of a device for the intended application. Finally, coatings can enhance specific optical performance or induce other specific physical properties, such as hydrophilic or hydrophobic behaviour.

According to Pia Harju, Business Development Manager at CDA, “We believe the market for both micro-optical elements and for integrated devices is absolutely global and we are targeting a range of industries including machine vision, lighting, medical devices, environmental applications and food production.”

Contact

Pia Harju,
Business Development Manager
CDA GmbH, Am Mittelrain 11, 98529 Suhl, Germany
Booth: North Hall 4110
Tel. +49 3681 387-390
eMail: pia.harju@cda.de
Web: www.cda-microworld.com

Eliminate Guesswork.

See Exactly Where the Heat Is.

Drop by Booth #1508 to see FLIR’s advanced thermal solutions for yourself.

FLIR thermal cameras show you clear pictures of invisible heat patterns and capture thousands upon thousands of accurate, non-contact temperature values in every image all in real time.

So stop guessing with thermocouples and start making real progress instead. Begin by watching the video at www.flir.com/a35sc to learn about the affordable, new A35sc Camera Kit, designed specifically for bench top testing, machine vision, and more.
Top Companies Now Hiring

Visit the SPIE Career Center at booth #923 to learn more about career advancement.

CIP Technologies

Senior Engineer roles
Ipswich, Suffolk, UK - Competitive Salary and Benefits

CIP Technologies are world leaders in photonic products and are developing advanced optoelectronic devices for the next generation of communications networks as part of the global telecommunications company, Huawei. We are looking for experienced and innovative individuals to join us in the next phase of development for our business. A list of our current vacancies is below along with a link to our website where you will find more information regarding these exciting roles:

- Hybrid Photonics Test Engineer
- Optoelectronic Device Test Manager
- Senior Hybrid Photonics Assembly Engineer
- Senior MZ Designer
- Senior MZ Engineer

http://www.ciphotonics.com/jobs/

KLA-Tencor

YOU ARE THE TALENT BEHIND THE TECHNOLOGY

Work with incredibly smart, forward-thinking people and enable leading-edge semiconductor and LED technology.

Northrop Grumman

Northrop Grumman is a leading global security company providing innovative systems, products and solutions in unmanned systems, cybersecurity, C4ISR, and logistics and modernization to government and commercial customers worldwide.

Come visit us at the job fair located in the south hall!
We have LIMITED ONSITE INTERVIEWS during the show!

Electrical Engineer • Laser Scientist • Chief Engineer
Senior Mechanical Engineer • Business Area Manager

Apply for other opportunities at: http://careers.northropgrumman.com/

Teledyne Technologies

Teledyne Technologies Incorporated is an alliance of technology-based companies, serving worldwide customers in aviation, electronics, industrial and consumer markets. Behind our diverse array of products is an equally diversified team of professionals whose combined unique strengths make us a stronger global company.

Teledyne is always looking for dynamic, experienced individuals to join our team of professionals. For complete job descriptions and to apply online, please visit our careers website at: www.teledyne.com

Thorlabs

Current Career Opportunities:
- Senior Optician – New Jersey
- Design Engineer – New Jersey
- Technical Support Manager – New Jersey
- Application Engineer – New Jersey
- Technical Marketeer – New Jersey
- Mechanical Engineer – Virginia
- Electrical Engineer – Virginia
- Applications Programmer – Texas
- Systems Engineer – Texas

Visit us at Booth 1713

ZYGO

One of the World's Most Respected Optical Metrology Companies Continues to Grow

For more than 40 years, Zygo Corporation has been a worldwide supplier of optical metrology instruments, high precision optical components, and electro-optical systems design and manufacturing services.

Zygo seeks to fill key openings such as:
- Mechanical Engineers
- Metrology Engineers
- Manufacturing Engineers
- Business Development
- Program Management

Visit Zygo at Booth #1107.

APPLICANTS APPLY ONLINE ONLY AT: http://www.zygo.com>Careers
FRED — the right solution every time.

Coherent beam propagation

合同光技术

ión light years into light seconds.

If you’re not using FRED Optical Engineering Software from Photon Engineering in your prototype design-build process then, frankly, you’re wasting precious time.

FRED is the most flexible, accurate and fastest optomechanical design and analysis tool available. FRED streamlines the design-build process, eliminating the need to develop multiple prototypes by helping you get it right the first time, every time.

So get more done, more quickly and with less effort. Get to know FRED from Photon Engineering.

520.393.3937
440 S. Williams Blvd., Suite 106
Tucson, Arizona 85711
www.photonengr.com

Photon Engineering
Illuminating Ideas

Learn all the ways FRED can speed up your optomechanical design and analysis projects. Contact Photon Engineering today.
Dynamic Laser Interferometers Micropolarizer Cameras Dynamic Surface Profilers
See us at Photonics West, South Hall, Booth 822.
Flexible waveguides meet “Big Data” challenge

In an effort to end copper’s long domination of circuit connections between silicon boards, Dow Corning and IBM have unveiled a system that they say can replace copper links with new low-loss polymer waveguides based on high-performance silicone.

A high-energy announcement from the team came during the “Fiber and Waveguides” session of the Organic Photonic Materials and Devices conference, part of the Photonics West OPTO symposium.

Dow Corning experts said their board-level photonics will solve mounting data flow problems for “Big Data,” for example data centers strained by the popularity of smart phones that are connected non-stop to the internet and social media networks.

They predicted it will lead to low-cost integration of photonics in more energy-efficient supercomputers and data centers. The polymer offers higher speed, lower power use and lower cost than copper at very high data rates, they said, and can withstand extreme operating heat and humidity. It proved stable in 2,000 hours of tests at 85 percent humidity and 85°C.

Dow Corning’s Brandon W. Swatowski, an optical materials engineer and physicist, has been working in the technology area for five years, most recently at Dow Corning’s labs in Midland, Michigan.

“To me this means taking it out of the lab and into feasibility for manufacturers,” Swatowski said. “It is the next step toward adopting a new way for the Big Data industry to solve this key issue.”

Another presenter at the session, Robert Norwood of the University of Arizona, commented, “I’ve been waiting 20 years for this. Now to see IBM pulling this along toward the market, that’s promising.” He added, “Dow Corning couldn’t make this market by themselves. The electronic circuit boards market is way too complex.”

Simon Jones, a Dow Corning executive in the United Kingdom, said here that he expects polymer waveguides to take hold with circuit boards at high data-rate applications, and in turn could replace copper in consumer products. “We have a low-loss product that is highly reliable and processable,” he said. “Big Data users are facing more and more challenges in moving data from one silicon chip to another. Our system will accomplish that with lower power usage and costs.”

The board-level waveguides, a joint venture of Dow Corning and IBM’s Photonics Research Group, can be fabricated using conventional manufacturing techniques already available, Jones said.

Swatowski said the products can be completed in less than 45 minutes, and that the silicone polymer, applied as a liquid, will process more quickly than other waveguide materials.

“With everybody connected by smart phones all the time, even on the road, we can’t just make more of what we are doing today,” Jones said. “For high-end computing systems, copper has hit the limit. We need revolutionary breakthroughs to support Big Data in moving data from silicon chip to silicon chip in the rack. Copper becomes increasingly difficult to use as data rates move from 25 gigabits per second toward 100 gigabits per second. We are stretching the boundary of performance — at first for board-level optical interconnects. Then over time this will work down to everyday applications.”

FORD BURKHART

Northwestern tunes mid-infrared QCLs

The ongoing challenges of developing short-wavelength QCLs were described by Neelanjani Bandyopadhyay of Northwestern University in an OPTO session on the topic. “Wave-lengths of 3 to 3.5 microns are important for several different spectroscopy applications, because it coincides with many hydrocarbon absorption bands,” he said. Of the candidate semiconductor systems, InGaAs-InAlAs on InP is the best choice on balance for short-wavelength QCLs, according to Northwestern’s research. Using it has allowed the development of the first room-temperature continuous wave QCLs in the target wavelength band, although the same system can additionally cover the entire 3-16 micron range under appropriate conditions.

Daylight Solutions has demonstrated a broadly-tunable high-resolution CW laser based on its QC devices. “Broad tuning capability allows the identification of multiple chemical species in spectroscopy applications, while narrow linewidth facilitates the high spectral resolution that spectroscopy requires,” commented Leigh Bromely. The company’s external-cavity system, called ECQCL, uses a grating to tune the QCL output and control the tuning performance, and a unique cavity geometry that enforces one mode during operation.

TIM HAYES

Shining light on pulmonary medicine

“It has been 20 years since optical coherence tomography was developed, so why has it made only limited penetration into pulmonary medicine? And will it ever?” Matthew Brenner of the University of California, Irvine, posed the questions during a BISOS panel session discussing the barriers hindering the adoption of optical technologies in the pulmonary field.

The numbers hold clues to the difficulties faced by developers interested in pulmonary optics. Human lungs contain up to 500 million alveoli, equivalent to an area of 70m², but optical access to specific regions through each lung’s millions of branches can be difficult. Many lung nodules are in fact benign, and large differences in refractive index between lung tissue and air complicate many imaging modalities. “In essence, it is like trying to find truffles in a forest, but from a satellite,” said Brenner.

Even so, several photonics-based techniques hold promise, especially ones targeting some of the commonest pulmonary conditions. Bradford Diephuis from Massachusetts General Hospital described a new imaging platform, christened OCT, intended to measure the increased mucous viscosity that is associated with cystic fibrosis. It uses a supercontinuum laser source producing 600-1000nm irradiation, and tracks the movement of particles in the mucus to arrive at a mean square displacement. From this, a viscosity can be readily calculated. This improves on the use of bulk rheometers, which are difficult to use on small volumes of mucus, and on fluorescence particle tracking methods, which are not feasible in vivo, said Diephuis.

Kam Chow of Canada’s BC Cancer Agency discussed a breakthrough that might help Raman spectroscopy take its place in pulmonary medicine. “We used a hollow-core photonic crystal fiber as the Raman cell, with a 785 nm source,” he explained. “In such a tiny space, the interactions between laser and molecule that produce the Raman signal are promoted and the efficiency of the process is increased.”

TIM HAYES
Lightweight mirror blank readied for space missions

Schott unveiled its latest “Zerodur” astronomical mirror blank, which at only 45kg is said to be 88% lighter than its predecessor, in the Moscone South Hall. This version is 1.2 meters in diameter, with a parallel face sheet of 8 mm and a rib thickness down to 2 mm. Schott said that it would be possible to make a 3 meter diameter version, something that could be used in the tilting “M5” mirror at the European Southern Observatory’s Extremely Large Telescope.

Other papers at the session described ways to use laser stimulation for cochlear implants to restore hearing, including a cat stimulated through optical fibers implanted in the cochlea. At first, the cat behaves playfully, but when the signal is “on,” it twits about, looking left or right, depending on the signal.

“The behavior of the cat is the evidence of success in creating auditory signals — and that is a step toward being able to create auditory stimulation in deaf humans,” Jansen concluded.

“But there’s still a question about what exactly the cat is hearing.”

FORD BURKHART

Retinal prosthesis reaches final stages of FDA trial

A retinal prosthesis to return sight to people with moderate to severe pigmentosa is in the final stages of FDA clinical trials, as reported by Lyndon Da Cruz et al in a BIOS session Sunday (paper 8615–6). The Argus II by Second Sight assists patients blinded by retinal damage that prevents the conversion of incident photons into electrical signals for processing in the brain.

Argus II comprises an implant that attaches directly to the eye, and a modified set of eyewear which works in tandem with the implant. The implant features an electronics case and antenna mounted to the outside of the eye, and an array of electrodes attached directly to the retina. The electrodes artificially stimulate the retina and can be switched individually like pixels in a screen. The brain then processes the “image” electrically projected onto the retina.

Already available in Europe, Argus II is being FDA-tested for improving patients’ ability to perform visual tasks, and the effect it has on their quality of life. It has been able to improve tasks such as locating a door in a room by almost a factor of two, and has even enabled patients to perform otherwise impossible everyday tasks, such as sorting dark and light colored socks.

In a remarkable video, one subject was able to walk down the street and halt when another pedestrian crossed his path, demonstrating the real-world utility of the device. Other possibilities that are being explored include face detection and text finding for conversion to visual brain.

Of 26 subjects in the study, 20 showed an improved quality of life, with the remaining six having a neutral response to the implant.

CHRISTINA C.C. WILLIS

Neuroscientists using infrared light to probe inside animal brains and nerve systems could help open pathways to advances like a bionic eye, to motorized prostheses controlled by a patient’s brain, or to improved cochlear implants to restore hearing.

One intriguing avenue of exploration came out of the blue. Optical coatings on the cavity mirrors in laser systems have an inherent thermal noise, caused by Brownian motion of the coating molecules. It might now be possible to remove or reduce this extraneous effect by engineering free-standing optical coatings in which the motion is effectively quashed through the action of light. Early experiments suggest that this approach could yield a ten-fold reduction in thermal noise, through what Aspelmeyer described as monocrystalline optomechanics.

“Coupling quantum information to other physical systems is a new playground, and a promising one,” he concluded. “This is just the start.”

TIM HAYES

Retinal prosthesis reaches final stages of FDA trial

A retinal prosthesis to return sight to people with moderate to severe pigmentosa is in the final stages of FDA clinical trials, as reported by Lyndon Da Cruz et al in a BIOS session Sunday (paper 8615–6). The Argus II by Second Sight assists patients blinded by retinal damage that prevents the conversion of incident photons into electrical signals for processing in the brain.

Argus II comprises an implant that attaches directly to the eye, and a modified set of eyewear which works in tandem with the implant. The implant features an electronics case and antenna mounted to the outside of the eye, and an array of electrodes attached directly to the retina. The electrodes artificially stimulate the retina and can be switched individually like pixels in a screen. The brain then processes the “image” electrically projected onto the retina.

Already available in Europe, Argus II is being FDA-tested for improving patients’ ability to perform visual tasks, and the effect it has on their quality of life. It has been able to improve tasks such as locating a door in a room by almost a factor of two, and has even enabled patients to perform otherwise impossible everyday tasks, such as sorting dark and light colored socks.

In a remarkable video, one subject was able to walk down the street and halt when another pedestrian crossed his path, demonstrating the real-world utility of the device. Other possibilities that are being explored include face detection and text finding for conversion to visual brain.

Of 26 subjects in the study, 20 showed an improved quality of life, with the remaining six having a neutral response to the implant.

CHRISTINA C.C. WILLIS

Neuroscientists using infrared light to probe inside animal brains and nerve systems could help open pathways to advances like a bionic eye, to motorized prostheses controlled by a patient’s brain, or to improved cochlear implants to restore hearing.

One intriguing avenue of exploration came out of the blue. Optical coatings on the cavity mirrors in laser systems have an inherent thermal noise, caused by Brownian motion of the coating molecules. It might now be possible to remove or reduce this extraneous effect by engineering free-standing optical coatings in which the motion is effectively quashed through the action of light. Early experiments suggest that this approach could yield a ten-fold reduction in thermal noise, through what Aspelmeyer described as monocrystalline optomechanics.

“Coupling quantum information to other physical systems is a new playground, and a promising one,” he concluded. “This is just the start.”

TIM HAYES

Neuroscientists using infrared light to probe inside animal brains and nerve systems could help open pathways to advances like a bionic eye, to motorized prostheses controlled by a patient’s brain, or to improved cochlear implants to restore hearing.

One intriguing avenue of exploration came out of the blue. Optical coatings on the cavity mirrors in laser systems have an inherent thermal noise, caused by Brownian motion of the coating molecules. It might now be possible to remove or reduce this extraneous effect by engineering free-standing optical coatings in which the motion is effectively quashed through the action of light. Early experiments suggest that this approach could yield a ten-fold reduction in thermal noise, through what Aspelmeyer described as monocrystalline optomechanics.

“Coupling quantum information to other physical systems is a new playground, and a promising one,” he concluded. “This is just the start.”

TIM HAYES
THE LEADER IN FIBER OPTIC CONNECTOR TECHNOLOGY

WHERE POWER AND PRECISION CONVERGE

FOR OVER 30 YEARS, DIAMOND HAS BEEN AT THE FOREFRONT OF INNOVATION IN FIBER OPTIC CONNECTOR TECHNOLOGY

Visit us at Photonics West, booth #4240

www.diamond-fo.com
Headquarter Switzerland: DIAMOND SA, via dei Patrizi 5, CH-6616 Losone, tel. +41 91 785 45 45
Think you know Gooch & Housego?

G&H super polished mirrors helped guide Mars Curiosity to a safe landing
G&H hyperspectral imagining systems are advancing cancer diagnostics
G&H optics enable the latest generation of laser rangefinders
G&H OCT modules allow greater efficiency in medical imaging systems
G&H provide modulation solutions for the world’s leading fiber lasers
G&H optics are helping make fusion power possible
G&H instruments measure the efficiency of LED lighting systems
G&H optics are key in developing more fuel efficient engines

Discover how our expertise can work for you
on booth #1723

Gooch & Housego
ENABLING OPTICAL TECHNOLOGIES

www.goochandhousego.com | sales@goochandhousego.com