daily coverage of the optics & photonics industry and the markets that it serves
NOTE: You will be creating an SPIE user account. After the account is created you will be redirected back to the Career Center to sign in.
Browsing Job 32 of 60
In order to Apply for this job you must be signed into your user account. New users can register by selecting Create an Account.
Save Job
In order to Save this job you must be signed into your user account. New users can register by selecting Create an Account.

Postdoctoral Research Fellowships (In Vivo Microscopy)

Guillermo J. Tearney, M.D., Ph.D., Boston , MA, United States
Employer Description

Guillermo J. Tearney, M.D., Ph.D.

Tearney Lab – Wellman Center for Photomedicine

Massachusetts General Hospital

Until recently, visualizing the architectural and cellular morphology of human tissue has required histopathological examination. Samples would be excised from the patient, processed, sectioned, stained and viewed under a microscope. In addition to being invasive, time consuming and costly, the static nature of conventional pathology prohibits the study of biological dynamics and function. The Tearney Laboratory at Massachusetts General Hospital has led the way in transforming the current diagnostic paradigm through the invention and translation of new noninvasive, high-resolution optical imaging modalities that enable disease diagnosis from living patients without excising tissues from the body.

Led by Guillermo (Gary) Tearney, MD, PhD, the lab’s 80+ person multidisciplinary team invents, validates and translates novel devices that use light to conduct microscopy in living patients. Light is uniquely well suited for noninvasively interrogating the microscopic structure, molecular composition and biomechanical properties of biological tissues. The goal of the laboratory’s research is to improve understanding and diagnosis of disease by imaging the human body at the highest possible level of detail in vivo.

Job Description

A Postdoctoral research fellowship in the area of In Vivo Microscopy is available in the Tearney Lab (www.tearneylab.org) at the Massachusetts General Hospital (MGH) in the Wellman Center for Photomedicine. This appointment will be made at the rank of postdoctoral fellow at Harvard Medical School. MGH’s role as a leading teaching affiliate of Harvard Medical School and close ties to Harvard University and MIT provide an outstanding environment for developing and translating new in vivo microscopy technologies with applications in basic and clinical research.

The fellowship will focus on the development and clinical application of advanced in vivo microscopy imaging devices, including endoscopic OCT, multimodality OCT, high-resolution OCT, spectroscopic OCT, FFOCM, confocal microscopy, SECM, capsule endomicroscopy, oblique-backscattering microscopy (OBM), and related technologies. The specific aim of the fellowship can be tailored to meet individual goals, which will provide an opportunity to build clinical, research, and publication experience.

Clinical applications of these technologies include diagnosis of cancer in the gastrointestinal and pulmonary tracts, and diagnosis of atherosclerosis in the cardiovascular system.

Representative recent publications from the lab include:

  • Leung, H.M., et al. Imaging intracellular motion with dynamic micro-optical coherence tomography. Biomed Opt Express 11, 2768-2778 (2020).
  • Yin, B., et al. 3D cellular-resolution imaging in arteries using few-mode interferometry. Nature: Light Sci Appl 8, 104 (2019).
  • Leung, H.M., et al. Intranasal micro-optical coherence tomography imaging for cystic fibrosis studies. Sci Transl Med 11(2019).
  • Gora, M.J., et al. Tethered capsule endomicroscopy for microscopic imaging of the esophagus, stomach, and duodenum without sedation in humans (with video). Gastrointest Endosc 88, 830-840 e833 (2018).
  • Gerbaud, E., et al. Plaque burden can be assessed using intravascular optical coherence tomography and a dedicated automated processing algorithm: a comparison study with intravascular ultrasound. Eur Heart J Cardiovasc Imaging 21, 640-652 (2020).
Job Requirements

A PhD (or equivalent) in Biomedical Engineering, Electrical Engineering, Physics or a related field is required. Demonstrated excellence in one of the various forms of optical coherence tomography, confocal microscopy, or other in vivo microscopy techniques is required. Additionally, expertise in one or more of the following areas is desired: optical imaging systems, optical design, circuit design, optical system fabrication, fiber optic systems and components, broadband light source development, spectroscopy, image processing, programming, and clinical studies with novel devices. Creativity is highly desirable.

Contact Information

Interested candidates are encouraged to send a CV accompanied by a cover letter describing any previous research training, specific areas of interest, and contact information for three letters of reference. Address correspondence to Dr. Gary Tearney, note the position you are applying for in the subject line, and send by email to tearneylabsearch@partners.org.

MGH is an equal opportunity employer.

12 January 2021
11 February 2021
Research and Development
Copyright © 2021 SPIE EuropeDesigned by Kestrel Web Services